P1118 [USACO06FEB]数字三角形

题目描述

FJ and his cows enjoy playing a mental game. They write down the numbers from 1 toN(1≤N≤10) in a certain order and then sum adjacent numbers to produce a new list with one fewer number. They repeat this until only a single number is left. For example, one instance of the game (when N=4) might go like this:

3   1   2   4
  4   3   6
    7   9
     16

Behind FJ’s back, the cows have started playing a more difficult game, in which they try to determine the starting sequence from only the final total and the number N.Unfortunately, the game is a bit above FJ’s mental arithmetic capabilities.

Write a program to help FJ play the game and keep up with the cows.

有这么一个游戏:

写出一个1至N的排列ai,然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直到只剩下一个数字位置。下面是一个例子:

3,1,2,4

4,3,6

7,9

16

最后得到16这样一个数字。

现在想要倒着玩这样一个游戏,如果知道N,知道最后得到的数字的大小sum,请你求出最初序列ai,为1至N的一个排列。若答案有多种可能,则输出字典序最小的那一个。

管理员注:本题描述有误,这里字典序指的是1,2,3,4,5,6,7,8,9,10,11, 12
而不是1,10,11,12,2,3,4,5,6,7,8,9
输入格式

两个正整数n,sum。
输出格式

输出包括1行,为字典序最小的那个答案。

当无解的时候,请什么也不输出。

思路:
本道题为杨辉三角的系数
如n=5时,sum=a + b * 4 + c * 6 + d * 4 + e。

代码:

#include 
#pragma GCC optimize(2)
#pragma GCC optimize(3)
using namespace std;

int a[15][15];
bool vis[15];
int tot[15];
int n, sum;

void init()
{
	for(int i = 1;i <= 13;++i)
		a[i][1] = 1;
	for(int i = 2;i <= 13;++i)
		for(int j = 2;j <= i;++j)
			a[i][j] = a[i - 1][j - 1] + a[i - 1][j];
}

void dfs(int dep, int ans)
{
	if(dep == n + 1)
	{
		if(ans == sum)
		{
			for(int i = 1;i < n;++i)
				cout << tot[i] << " ";
			cout << tot[n] << endl;
			exit(0);
		}
		return;
	}
	for(int i = 1;i <= n;++i)
		if(!vis[i])
		{
			vis[i] = 1;
			tot[dep] = i;
			dfs(dep + 1, ans + a[n][dep] * i);
			vis[i] = 0;
		}
}

int main()
{
	//freopen(".in", "r", stdin);
	//freopen(".out", "w", stdout);
	memset(a, 0, sizeof(a));
	memset(vis, 0, sizeof(vis));
	init();
	cin >> n >> sum;
	dfs(1, 0);
	return 0;
}

你可能感兴趣的:(P1118 [USACO06FEB]数字三角形)