In this problem, you have to maintain a dynamic set of numbers which support the two fundamental operations
INSERT(S,x): if x is not in S, insert x into S
DELETE(S,x): if x is in S, delete x from S
and the two type of queries
K-TH(S) : return the k-th smallest element of S
COUNT(S,x): return the number of elements of S smaller than x
Input
Line 1: Q (1 ≤ Q ≤ 200000), the number of operations
In the next Q lines, the first token of each line is a character I, D, K or C meaning that the corresponding operation is INSERT, DELETE, K-TH or COUNT, respectively, following by a whitespace and an integer which is the parameter for that operation.
If the parameter is a value x, it is guaranteed that 0 ≤ |x| ≤ 109. If the parameter is an index k, it is guaranteed that 1 ≤ k ≤ 109.
Output
For each query, print the corresponding result in a single line. In particular, for the queries K-TH, if k is larger than the number of elements in S, print the word ‘invalid’.
Example
Input
8
I -1
I -1
I 2
C 0
K 2
D -1
K 1
K 2
Output
1
2
2
invalid
题目:这里写链接内容
题意:维护一个集合S,实现对集合数据的插入,删除,求第K小,求比K小的数的个数。
思路:题中的插入和删除不一定都是合法,意思是插入的数据可能已经存在但之记录一个,删除的可能是集合中不存在的。
第K小,k可能会大于集合大小,此时输出invalid 。
很显然,Treap的模板题,需要注意的是处理不合理的插入,删除,求第K小。不然很容易RE。
代码:
#include
#include
#include
#include
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn =30100;
struct Treap {
struct node {
ll key, weight, cnt, size;
node *childs[2];
void init(ll x) {
key = x;
weight = rand();
cnt = 1;
size = 1;
childs[0] = childs[1] = NULL;
}
};
node *root;
void update(node *&x) {
if (x == NULL)
return;
ll right = 0, left = 0;
if (x->childs[0] != NULL)right = x->childs[0]->size;
if (x->childs[1] != NULL)left = x->childs[1]->size;
x->size = right + left + x->cnt;
}
void rotate(node *&x, int t) {
node *y = x->childs[t];
x->childs[t] = y->childs[1 - t];
y->childs[1 - t] = x;
update(x);
update(y);
x = y;
}
void _insert(node *&x, ll k) {
if (x != NULL) {
if (x->key == k) {
x->cnt=1;
} else {
int t = x->key < k;
_insert(x->childs[t], k);
if (x->childs[t]->weight < x->weight) {
rotate(x, t);
}
}
} else {
x = (node *) malloc(sizeof(node));
x->init(k);
}
update(x);
}
void _erase(node *&x, ll k) {
if(x==NULL)return;
if (x->key == k) {
if (x->cnt > 1) {
x->cnt--;
} else {//如果被删除节点存在子节点,先将其旋转至底层再删除
if (x->childs[0] == NULL && x->childs[1] == NULL) {
x->cnt = 0;
return;
}
int t;
if (x->childs[0] == NULL)t = 1;
else if (x->childs[1] == NULL)t = 0;
else t = x->childs[0]->weight > x->childs[1]->weight;
rotate(x, t);
_erase(x, k);
}
} else {
int t = x->key < k;
if(x->childs[t]!=NULL)_erase(x->childs[t], k);
if(x->childs[t]!=NULL&&x->childs[t]->cnt == 0)free(x->childs[t]), x->childs[t] = NULL;//动态内存释放
}
update(x);
}
ll _getkth(node *&x, ll k) {
ll t = 0;
if (x->childs[0] != NULL)t = x->childs[0]->size;
if (k <= t)return _getkth(x->childs[0], k);
k -= t + x->cnt;
if (k <= 0)return x->key;
return _getkth(x->childs[1], k);
}
void _lower(node *&x,ll k,ll &ans){
if(x->key<=k){
ans=max(ans,x->key);
if(x->childs[1]!=NULL)_lower(x->childs[1],k,ans);
}else if(x->childs[0]!=NULL)_lower(x->childs[0],k,ans);
}
void _count(node *&x,ll k,ll &ans){
if(x==NULL)return;
if(x->key>=k){
ans-=x->cnt;
if(x->childs[1]!=NULL)ans-=x->childs[1]->size;
if(x->childs[0]!=NULL)_count(x->childs[0],k,ans);
}else if(x->childs[1]!=NULL)_count(x->childs[1],k,ans);
}
void insert(ll k) {
_insert(root, k);
}
void erase(ll k) {
_erase(root, k);
if(root!=NULL&&root->cnt == 0)free(root), root = NULL;
}
ll getkth(ll k) {
if(root==NULL||k>root->size)return -1;
return _getkth(root, k);
}
void lower(ll k,ll &ans){
_lower(root,k,ans);
}
void count(ll k,ll &ans){
_count(root,k,ans);
}
};
Treap tree;
int main() {
srand((ll)time(NULL));
int q;
scanf("%d",&q);
for(int i=0;ichar c;
ll a;
scanf(" %c%lld",&c,&a);
if(c=='I')tree.insert(a);
else if(c=='D')tree.erase(a);
else if(c=='K'){
ll ans=tree.getkth(a);
if(ans==-1)printf("invalid\n");
else printf("%lld\n",ans);
}else {
ll ans=0;
if(tree.root!=NULL)ans=tree.root->size;
tree.count(a,ans);
printf("%lld\n",ans);
}
}
return 0;
}