python多进程提取处理大量文本的关键词

经常需要通过python代码来提取文本的关键词,用于文本分析。而实际应用中文本量又是大量的数据,如果使用单进程的话,效率会比较低,因此可以考虑使用多进程。

python的多进程只需要使用multiprocessing的模块就行,如果使用大量的进程就可以使用multiprocessing的进程池--Pool,然后不同进程处理时使用apply_async函数进行异步处理即可。


实验测试语料:message.txt中存放的581行文本,一共7M的数据,每行提取100个关键词。

代码如下:

#coding:utf-8
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
from multiprocessing import Pool,Queue,Process
import multiprocessing as mp 
import time,random
import os
import codecs
import jieba.analyse
jieba.analyse.set_stop_words("yy_stop_words.txt")

def extract_keyword(input_string):
	#print("Do task by process {proc}".format(proc=os.getpid()))
	tags = jieba.analyse.extract_tags(input_string, topK=100)
	#print("key words:{kw}".format(kw=" ".join(tags)))
	return tags

#def parallel_extract_keyword(input_string,out_file):
def parallel_extract_keyword(input_string):
	#print("Do task by process {proc}".format(proc=os.getpid()))
	tags = jieba.analyse.extract_tags(input_string, topK=100)
	#time.sleep(random.random())
	#print("key words:{kw}".format(kw=" ".join(tags)))
	#o_f = open(out_file,'w')
	#o_f.write(" ".join(tags)+"\n")
	return tags
if __name__ == "__main__":


	data_file = sys.argv[1]
	with codecs.open(data_file) as f:
		lines = f.readlines()
		f.close()
	
	out_put = data_file.split('.')[0] +"_tags.txt" 
	t0 = time.time()
	for line in lines:
		parallel_extract_keyword(line)
		#parallel_extract_keyword(line,out_put)
		#extract_keyword(line)
	print("串行处理花费时间{t}".format(t=time.time()-t0))

	
	pool = Pool(processes=int(mp.cpu_count()*0.7))
	t1 = time.time()
	#for line in lines:
		#pool.apply_async(parallel_extract_keyword,(line,out_put))
	#保存处理的结果,可以方便输出到文件
	res = pool.map(parallel_extract_keyword,lines)
	#print("Print keywords:")
	#for tag in res:
		#print(" ".join(tag))

	pool.close()
	pool.join()
	print("并行处理花费时间{t}s".format(t=time.time()-t1))



运行:
python data_process_by_multiprocess.py message.txt
message.txt是每行是一个文档,共581行,7M的数据
运行时间:



不使用sleep来挂起进程,也就是把 time.sleep(random.random())注释掉,运行可以大大节省时间。

python多进程提取处理大量文本的关键词_第1张图片

你可能感兴趣的:(python)