数据降维之多维缩放MDS(Multiple Dimensional Scaling)

网上看到关于数据降维的文章不少,介绍MDS的却极少,遂决定写一写。

考虑一个这样的问题。我们有n个样本,每个样本维度为m。我们的目标是用不同的新的k维向量(k<

举个栗子:原来有3个4维样本(1,0,0,3),(8,0,0,5),(2,0,0,4),显然我们可以用三个新的二维样本(1,3),(8,5),(2,4)来保持维度变小并相互之间距离不变。

那么问题来了,如果不是这么明显的数据该如何来处理?降维后的距离一定会相等吗?

MDS算法给出了在给定k值条件下的最优解决方案。

首先我们计算所有原空间中样本相互之间的距离平方矩阵Dist[][],显然这是一非负对称实数矩阵。至此,其实我们要维护的就是Dist不变,与原样本已经无关了。

接下来我们要根据Dist推算出目标降维后内积矩阵B,B[i][j]就是降维后第i,j个向量的内积。关于推导过程可以看相关书籍,这里给出一个优美的结论。

  B[i][j]=-0.5(Dist[i][j] - avg(Disti[i]) - avg(Distj[j]) + avg_Dist)

有了B,只需要对B分解成B=U*UT的形式就达到我们的目标了。

对B做特征分解(奇异分解也一样),B=V*diag*VT。

我们可以取最大的k个特征值及其对应的特征向量构成diagk和Vk

此时U=Vk*diagk0,5就是我们降维后的n个行向量组成的矩阵了。

如果还有疑惑,下面的代码运行试试就明白了。

 

 

召唤算法君:

 

import numpy as np

# run this to get a test matrix
# A = np.random.randint(1,100,(5,20))
# np.save('mat.npy', A)
# exit()

A = np.load('mat.npy')

n,m = A.shape
Dist = np.zeros((n,n))
B = np.zeros((n,n))
for i in range(n):
    for j in range(n):
        Dist[i][j] = sum((ix-jx)**2 for ix,jx in zip(A[i], A[j]))

disti2 = np.array([0]*n)
distj2 = np.array([0]*n)

for x in range(n):
    disti2[x] = np.mean([Dist[x][j] for j in range(n)])
    distj2[x] = np.mean([Dist[i][x] for i in range(n)])

distij2 = np.mean([Dist[i][j] for i in range(n) for j in range(n)])

for i in range(n):
    for j in range(n):
        B[i][j] = -0.5*(Dist[i][j] - disti2[i] - distj2[j] + distij2)

w,v = np.linalg.eig(B)

v=v.transpose()

U = [{'eVal':w[i], 'eVec':v[i]} for i in range(n)]

U.sort(key = lambda obj:obj.get('eVal'), reverse = True)
k=4
w=np.array([0]*k)
v=np.zeros((k,n))

for i in range(k):
    w[i] = U[i].get('eVal')**0.5
    v[i] = U[i].get('eVec')

ans = np.dot(v.transpose(), np.diag(w))

ans_dist = np.zeros((n,n))
for i in range(n):
    ans_str=""
    for j in range(n):
        ans_dist[i][j] = sum((ix-jx)**2 for ix,jx in zip(ans[i], ans[j]))

print("Orign dis[][] is :")
print Dist
print("MDS dis[][] is :")
print(ans_dist)

 

转载于:https://www.cnblogs.com/lochan/p/6627511.html

你可能感兴趣的:(数据降维之多维缩放MDS(Multiple Dimensional Scaling))