wide&deep模型

一、稀疏特征

1、稀疏特征

  • 离散值特征

  • One-hot表示

  • 叉乘

  • 叉乘之后

    稀疏特征做差乘获取共现信息

    实现记忆的效果

2、稀疏特征的优缺点

优点:有效,广泛 用于工业界

缺点:需要人工设计;可能过拟合,所有特征都叉乘,相当于记住每一个样本

二、密集特征

  • 向量表达

    eg:词表={AI,你,我,中国},他=[0.3, 0.2, 0.6,(n维向量)]

  • Word2vec工具

    向量转换:将一个词转换为一个向量,通过向量之间的距离,衡量词语之间的距离

    密集特征的优缺点:

    优点

  • 带有语义信息,不同向量之间有相关性

  • 兼容没有出现过的特征组合

  • 更少人工参与

    缺点:

  • 过度泛化,推荐不怎么相关的产品

三、模型对比

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Jjp93s3k-1575542017036)(/Users/bobwang/Library/Application Support/typora-user-images/image-20191204150705551.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zuO37pHI-1575542017037)(/Users/bobwang/Library/Application Support/typora-user-images/image-20191204150815240.png)]

四、函数式API(功能性API)

核心代码部分:(其余的代码跟回归模型实战共用)

模型的构建

# 函数式API,功能API
input = keras.layers.Input(shape=x_train.shape[1:])
# 符合函数式的输入,对应deep
hidden1 = keras.layers.Dense(30, activation="relu")(input)
hidden2 = keras.layers.Dense(30, activation="relu")(hidden1)
# 将deep和wide结合
concat = keras.layers.concatenate([input, hidden2])
# 网络结构中的输出
output = keras.layers.Dense(1)(concat)
# 模型固化
model = keras.models.Model(inputs=[input,], outputs=[output,])

model.summary()
model.compile(loss="mean_squared_error", optimizer="sgd")
callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-2)]

网络结构:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wyh0NbWY-1575542017037)(/Users/bobwang/Library/Application Support/typora-user-images/image-20191204162742230.png)]

五、子类API实现模型

核心代码

# 子类API
class WideDeepModel(keras.models.Model):
    def __init__(self):
        super(WideDeepModel, self).__init__()
        self.hidden1_layer =  keras.layers.Dense(30, activation="relu")
        self.hidden2_layer = keras.layers.Dense(30, activation="relu")
        self.output_layer = keras.layers.Dense(1)
    
    def call(self, input):
        hidden1 = self.hidden1_layer(input)
        hidden2 = self.hidden2_layer(hidden1)
        concat = keras.layers.concatenate([input, hidden2])
        # 网络结构中的输出
        output = self.output_layer(concat)
        return output

# 模型固化
model = keras.models.Sequential([WideDeepModel(),])
model.build(input_shape=(None, 8))
model.summary()
model.compile(loss="mean_squared_error", optimizer="sgd")
callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-2)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Sya78TcR-1575542017038)(/Users/bobwang/Library/Application Support/typora-user-images/image-20191204164410606.png)]

六、多输入和多输出

1、多输入核心代码

input_wide = keras.layers.Input(shape=[5])
input_deep =keras.layers.Input(shape=[6])
hidden1 = keras.layers.Dense(30, activation="relu")(input_deep)
hidden2 = keras.layers.Dense(30,activation="relu")(hidden1)
concat = keras.layers.concatenate([input_wide, hidden2])
output = keras.layers.Dense(1)(concat)
model = keras.models.Model(inputs=[input_wide, input_deep], outputs =[output,])

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ooN3XfFh-1575542017038)(/Users/bobwang/Library/Application Support/typora-user-images/image-20191205113504861.png)]

x_train_scaled_wide = x_train_scaled[:,:5]
x_train_scaled_deep = x_train_scaled[:, 2:]
x_valid_scaled_wide = x_valid_scaled[:, :5]
x_valid_scaled_deep = x_valid_scaled[:, 2:]
x_test_scaled_wide = x_test_scaled[:, :5]
x_test_scaled_deep = x_test_scaled[:, 2:]

history = model.fit([x_train_scaled_wide,x_train_scaled_deep], y_train,
	validation_data = ([x_valid_scaled_wide, x_valid_scaled_deep], y_valid), callbacks = callbacks)

测试集合

model.evaluate([x_test_scaled, x_test_scaled], y_test)

你可能感兴趣的:(tensorflow,keras)