百度飞桨PaddlePaddle学习

学习了人工智能、机器学习、深度学习的关系
机器学习的实现
机器学习的实现可以分成两步:训练和预测,类似于我们熟悉的归纳和演绎。
深度学习
机器学习算法理论在上个世纪90年代发展成熟,在许多领域都取得了成功应用。但平静的日子只延续到2010年左右,随着大数据的涌现和计算机算力提升,深度学习模型异军突起,极大改变了机器学习的应用格局。今天,多数机器学习任务都可以使用深度学习模型解决,尤其在语音、计算机视觉和自然语言处理等领域,深度学习模型的效果比传统机器学习算法有显著提升。
神经网络的基本概念
人工神经网络包括多个神经网络层,如卷积层、全连接层、LSTM等,每一层又包括很多神经元,超过三层的非线性神经网络都可以被称为深度神经网络。通俗的讲,深度学习的模型可以视为是输入到输出的映射函数,如图像到高级语义(美女)的映射,足够深的神经网络理论上可以拟合任何复杂的函数。因此神经网络非常适合学习样本数据的内在规律和表示层次,对文字、图像和语音任务有很好的适用性。因为这几个领域的任务是人工智能的基础模块,所以深度学习被称为实现人工智能的基础也就不足为奇了。
学习了经典的全连接神经网络:
输入层:将数据输入给神经网络。在该任务中,输入层的尺度为28×28的像素值。
隐含层:增加网络深度和复杂度,隐含层的节点数是可以调整的,节点数越多,神经网络表示能力越强,参数量也会增加。在该任务中,中间的两个隐含层为10×10的结构,通常隐含层会比输入层的尺寸小,以便对关键信息做抽象,激活函数使用常见的sigmoid函数。
输出层:输出网络计算结果,输出层的节点数是固定的。如果是回归问题,节点数量为需要回归的数字数量;如果是分类问题,则是分类标签的数量。在该任务中,模型的输出是回归一个数字,输出层的尺寸为1。
学习了梯度下降算法,学习了房价预测以及手写数据集。

你可能感兴趣的:(百度飞桨PaddlePaddle学习)