- Yolo-v3利用GPU训练make时发生错误:/usr/bin/ld: cannot find -lcuda
徐小妞66666
一.利用GPU训练Yolov3时,首先要修改MakeFile文件,修改格式如下:GPU=1(原来为0)CUDNN=1(原来为0)NVCC=/usr/local/cuda/bin/nvcc(新建,注意自己本机的地址)二.此时make产生错误/usr/bin/ld:cannotfind-lcuda1.查看MakeFile文件找到该行代码:LDFLAGS+=-L/usr/local/cuda/lib64
- 目标检测-YOLOv3
wydxry
深度学习目标检测YOLO深度学习
YOLOv3介绍YOLOv3(YouOnlyLookOnce,Version3)是YOLO系列目标检测模型的第三个版本,相较于YOLOv2有了显著的改进和增强,尤其在检测速度和精度上表现优异。YOLOv3的设计目标是在保持高速的前提下提升检测的准确性和稳定性。下面是对YOLOv3改进和优势的介绍,以及YOLOv3核心部分的代码展示。相比YOLOv2的改进与优势多尺度特征金字塔YOLOv3引入了FP
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- 来了,YoloV5的TensorFlow版开源
半壶雪
开源自从yolov5开源以来,(不管因为啥原因)深受瞩目,我最近用tensorflow实现了其主要部分。可能是第一个纯正的tensorfow2版本,欢迎tryandstar:github.com/LongxingTan…之前在工作中接触过yolov3(跑过demo应该就算接触过了),效果惊艳。我在视觉领域只是个新人(悲伤的是我一个中年人却在哪儿哪儿都TM是新人),能力有限,疏漏难免。从头开始实现,
- YOLO缺陷检测学习笔记(2)
tt555555555555
YOLO缺陷检测学习笔记YOLO学习笔记
YOLO缺陷检测学习笔记(2)残差连接1.**YOLO的残差连接结构**2.**YOLO使用残差连接的目的**3.**YOLO中的残差块**4.**YOLOv3和YOLOv4的残差连接架构**YOLO网络架构概述1.特征提取网络2.预测头(DetectionHead)3.后处理(Post-processing)YOLOv3/v4的改进YOLOv3YOLOv4SoftmaxSoftmax的性质:So
- DNN学习平台(GoogleNet、SSD、FastRCNN、Yolov3)
吾名招财
人工智能MFC界面应用dnnopencv神经网络
DNN学习平台(GoogleNet、SSD、FastRCNN、Yolov3)前言相关介绍1,登录界面:2,主界面:3,部分功能演示如下(1)识别网络图片(2)GoogleNet分类(3)人脸识别(4)SSD目标检测(5)FasterRCNN目标检测资源链接(含源码)前言 还记得上学那会儿刚学完几个深度学习模型的C++简单部署应用,当时特别兴奋,外加那会儿还能自己写界面生成应用程序了,就想着做一个
- YOLO系列目标检测数据集大全_yolo数据集(1)
2401_84187537
程序员YOLO目标检测人工智能
Darknet版YOLOv4猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541214Darknet版YOLOv3猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541209DeepSORT-YOLOv5猫狗检测和跟踪+可视化目标运动轨迹yolov7猫狗
- 目标检测 | yolov8 原理和介绍
hero_hilog
目标检测AIYOLO目标检测
相关系列:目标检测|yolov1原理和介绍目标检测|yolov2/yolo9000原理和介绍目标检测|yolov3原理和介绍目标检测|yolov4原理和介绍目标检测|yolov5原理和介绍目标检测|yolov6原理和介绍目标检测|yolov7原理和介绍目标检测|yolov8原理和介绍目标检测|yolov9原理和介绍目标检测|yolov10原理和介绍IEEE链接:https://ieeexplore
- 【计算机视觉面经四】基于深度学习的目标检测算法面试必备(RCNN~YOLOv5)
旅途中的宽~
计算机视觉面经总结计算机视觉深度学习目标检测YOLORCNN
文章目录一、前言二、两阶段目标检测算法2.1RCNN2.2Fast-RCNN2.3FasterR-CNN三、多阶段目标检测算法3.1CascadeR-CNN四、单阶段目标检测算法4.1编码方式4.1.1基于中心坐标4.1.1.1方案14.1.1.2方案24.1.1.3方案34.2YOLOv14.3SSD4.4YOLOv24.5RetinaNet4.6YOLOv34.7YOLOv44.8YOLOv5
- 深度学习||YOLO(You Only Look Once)深度学习的实时目标检测算法(YOLOv1~YOLOv5)
小嘤嘤怪学
深度学习算法目标检测
目录YOLOv1:YOLOv2:YOLOv3:YOLOv4:YOLOv5:总结:YOLO(YouOnlyLookOnce)是一系列基于深度学习的实时目标检测算法。自从2015年首次被提出以来,YOLO系列不断发展,推出了多个版本,包括YOLOv1,YOLOv2,YOLOv3,YOLOv4,和YOLOv5等。下面是对YOLO系列的详解:YOLOv1:提出时间:2015年。主要贡献:将目标检测任务转换
- 挑战杯 YOLOv7 目标检测网络解读
laafeer
python
文章目录0前言1yolov7的整体结构2关键点-backbone关键点-head3训练4使用效果5最后0前言世界变化太快,YOLOv6还没用熟YOLOv7就来了,如果有同学的毕设项目想用上最新的技术,不妨看看学长的这篇文章,学长带大家简单的解读yolov7,目的是对yolov7有个基础的理解。从2015年的YOLOV1,2016年YOLOV2,2018年的YOLOV3,到2020年的YOLOV4、
- yolov3-tiny
HelloWorldQAQ。
CNN模型介绍自动驾驶深度学习神经网络
文章目录一、目标检测简介二、Yolov3-tiny2.1anchorbox2.2NMS算法三、后记一、目标检测简介针对一张图片,根据后续任务的需要,有三个主要层次。一是分类(Classification),即是将图像结构化为某一类别的信息,用事先确定好的类别或实例ID来描述图片,这一任务是最简单、最基础的图像理解任务,也是深度学习模型最先取得突破和实现大规模应用的任务。其中ImageNet是最权威
- YOLO系列详解(YOLOV1-YOLOV3)
X.AI666
深度学习yolo
YOLO算法简介本文主要介绍YOLO算法,包括YOLOv1、YOLOv2/YOLO9000和YOLOv3。YOLO算法作为one-stage目标检测算法最典型的代表,其基于深度神经网络进行对象的识别和定位,运行速度很快,可以用于实时系统。了解YOLO是对目标检测算法研究的一个必须步骤。目标检测思路目标检测属于计算机视觉的一个中层任务,该任务可以细化为目标定位与目标识别两个任务,简单来说,找到图片中
- AI助力农作物自动采摘,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统
Together_CZ
人工智能YOLO
去年十一那会无意间刷到一个视频展示的就是德国机械收割机非常高效自动化地24小时不间断地在超广阔的土地上采摘各种作物,专家设计出来了很多用于采摘不同农作物的大型机械,看着非常震撼,但是我们国内农业的发展还是相对比较滞后的,小的时候拔草是一个人一列蹲在地里就在那埋头拔草,不知道什么时候才能走到地的尽头,小块的分散的土地太多基本上都是只能人工手工来取收割,大点的连片的土地可以用收割机来收割,不过收割机基
- 如何用OpenCV加载Yolov5并使用CUDA加速
geekboys
1背景随着Pytorch、TensorFlow等有效的框架被用来深度的学习开发,各种任务的模型也层出不穷。但是大多的部署往往依赖签名的两个框架,需要前面的两个框架大量的库。而且先前的Yolov3和Yolov4有官方直接支持,可以自接加载weights和cfg文件。部署起来相对来说就很简单,但是最新的Yolov5确实基于Pytorch版本的,这使用Opencv部署起来就稍微的麻烦了。可以这时候我们希
- 在C++上如何使用OpenCV头文件是什么_用OpenCV的dnn模块调用yolov3模型
weixin_39785858
前言在实际应用场景,我们用darknet的GPU版本训练自己的数据,得到权值文件,然后我们可以调用训练的好的模型去实现自己的检测项目。一般情况下,我们可以使用opencv的dnn模块去调用yolov3。下面大致讲解一下如何是实现调用。一、环境准备1、编译好darknet的GPU版本。可参考我的文章https://zhuanlan.zhihu.com/p/1343471762、安装好opencv3.
- C++ OpenCV-dnn模块调用模型进行目标检测 (支持CUDA加速)
枸杞叶儿
经验笔记深度学习神经网络
前言OpenCV4.4开始支持YOLOv4模型的调用,需要使用Opencv的DNN模块。编译安装OpenCV和OpenCV-contrib库步骤,点此链接C++OpenCV调用YOLO模型的完整代码点此下载一、模型加载constexprconstchar*darknet_cfg="../face/yolov3-tiny.cfg";//网络文件constexprconstchar*darknet_w
- Darknet yolov3 Makefile文件解析
未完城
ubuntudeep-learningdarknetlinuxmakefile
文章目录1.darknetMakefile注释2.reference现在搞深度学习都在linux平台,经常遇到gcc手动编译的时候。由于linux平台没有通用的IDE,大家都是靠Makefile配置文件进行make。在学习darknet框架的过程中,决定要顺便搞清楚Makefile的写法和参数配置。Makefile完整的教程网上有很多,我暂时也不打算完整学一遍,仅仅把遇到的都搞懂,下次遇到新的东西
- 【从零开始学习YOLOv3】5. 网络模型的构建
pprpp
前言:之前几篇讲了cfg文件的理解、数据集的构建、数据加载机制和超参数进化机制,本文将讲解YOLOv3如何从cfg文件构造模型。本文涉及到一个比较有用的部分就是bias的设置,可以提升mAP、F1、P、R等指标,还能让训练过程更加平滑。1.cfg文件在YOLOv3中,修改网络结构很容易,只需要修改cfg文件即可。目前,cfg文件支持convolutional,maxpool,unsample,ro
- python相对导入错误,ValueError: attempted relative import beyond top-level package
aminghhhh
pythonpycharm
在yolov3的文件中出现了类似的相对导入错误,同时类似的还有ValueError:attemptedrelativeimportnoparentpackage或者明明存在的.py文件报错说不存在,例如Modulenofound:utilsisnoamodle/XXXisnotamodle。。。这是由于在引入文件的时候相对导入的问题直接说解决方法:将相对导入改为绝对导入1.先右键点击package
- 经典目标检测YOLO系列(三)YOLOv3算法详解
undo_try
#深度学习目标检测YOLOpython
经典目标检测YOLO系列(三)YOLOv3算法详解不论是YOLOv1,还是YOLOv2,都有一个共同的致命缺陷:小目标检测的性能差。尽管YOLOv2使用了passthrough技术将16倍降采样的特征图(即C4特征图)融合到了C5特征图中,但最终的检测仍是在C5尺度的特征图上进行的。为了解决这一问题,YOLO作者做了第3次改进,主要改进如下:使用了更好的主干网络DarkNet-53使用了多级检测与
- 经典目标检测YOLO系列(三)YOLOv3的复现(2)正样本的匹配、损失函数的实现
undo_try
#深度学习目标检测YOLO
经典目标检测YOLO系列(三)YOLOv3的复现(2)正样本的匹配、损失函数的实现我们在之前实现YOLOv2的基础上,加入了多级检测及FPN,快速的实现了YOLOv3的网络架构,并且实现了前向推理过程。经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程我们继续进行YOLOv3的复现。1正样本匹配策略1.1基于先验框的正样本匹配策略官方YOLOv2的正样本匹配思路是根据
- 经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程
undo_try
#深度学习目标检测YOLO人工智能
经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程和之前实现的YOLOv2一样,根据《YOLO目标检测》(ISBN:9787115627094)一书,在不脱离YOLOv3的大部分核心理念的前提下,重构一款较新的YOLOv3检测器,来对YOLOv3有更加深刻的认识。书中源码连接:RT-ODLab:YOLOTutorial1、YOLOv3网络架构1.1DarkNet53主
- keras yolo v3调用笔记本本地摄像头实时监测
A大于_963a
最近在学习yolov3,下载了yolo的keras版本,按照工程里readme中将权重下载,运行Convert后,可以进行yolo的图像检测,图像检测命令:pythonyolo_video.py--image,然后在提示下输入图片路径即可实现本地图片检测。本地视频检测:pythonyolo_video.py--inputxxx.mp4即可实时检测本地视频。然后,想用笔记本的自带摄像头进行实时检测,
- YOLOv3测试和训练
weixin_42103837
python
参考文章:学习YOLO系列的个人总结_boss-dog的博客-CSDN博客windows操作系统上运行ultralytics/yolov3进行目标检测_itsgoodtobebad的专栏-CSDN博客0.环境windows101.下载2.建立虚环境、安装包安装包非常缓慢忘了指定下载源$pipinstall-rrequirements.txt指定下载源pipinstall-rrequirements
- [C#]winform部署yolov7+CRNN实现车牌颜色识别车牌号检测识别
FL1623863129
C#YOLO
【官方框架地址】https://github.com/WongKinYiu/yolov7.git【框架介绍】Yolov7是一种目标检测算法,全称YouOnlyLookOnceversion7。它是继Yolov3和Yolov4之后的又一重要成果,是目标检测领域的一个重要里程碑。Yolov7在算法结构上继承了其前作Yolov3和Yolov4的设计思想,但在许多方面进行了优化和改进。它采用了深度学习技术
- 用python实现yolov3检测工业相机视频
蘑菇的神
python音视频计算机视觉
前言:学习记录环境:windows+pycharm+yolov3相机:海康工业网口相机:MV-CA020-20GC(Gige,彩色,全局)1.网上有很多网络摄像头跑yolo的案例,但是,不行。网络摄像头和工业相机不一样!yolo是能直接检测网络摄像头的视频的(这个我没有试过,因为没有网络摄像头)./darknetdetectordemocfg/coco.datacfg/yolov3.cfgyolo
- 手把手教你用深度学习做物体检测(一): 快速感受物体检测的酷炫
AAI机器之心
深度学习人工智能YOLOcnn机器学习
我们先来看看什么是物体检测,见下图:如上图所示,物体检测就是需要检测出图像中有哪些目标物体,并且框出其在图像中的位置。本篇文章,我将会介绍如何利用训练好的物体检测模型来快速实现上图的效果,这里我们将会用到基于coco数据集训练的yolov3模型,该模型能识别80类物品,具体如下:人自行车汽车摩托车飞机公共汽车火车卡车船红绿灯消防栓停车标志停车收费码表长凳鸟猫狗马羊牛大象熊斑马长颈鹿双肩包雨伞手提包
- 基于树莓派与YOLOv3模型的人体目标检测小车(三)
凌乱533
模型效果:在上文中,我们制作了数据集,并利用数据集进行了模型的训练,利用静态图片和视频对模型的检测效果进行了检验,发现效果还是不错的。imageimage前两张为静态图片检测,后一张为视频检测效果截图。image但是模型要想部署在算力微弱的树莓派上,还需要进行两次模型转化才能运行在NCS上进行前向推理。模型转化:第一次转化:(.weight-->.pb)这里的模型转化OpenVINO给出了官方指南
- YOLOv3(Pytorch版本和Tensorflow版本)学习
南叔先生
机器学习pytorchtensorflow深度学习
一、地址来源YOLOv4最全复现代码合集(含PyTorch/TF/Keras和Caffe等)二、Pytorch版本地址:https://github.com/Tianxiaomo/pytorch-YOLOv4这个地址支持训练RequirementsandDependenciespipinstallnumpy==1.18.2#CPUonlypipinstalltorch==1.4.0+cputorc
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs