- Neo4j 的向量搜索(Neo4jVector)和常见的向量数据库(比如 Milvus、Qdrant)之间的区别与联系
先说联系(共同点)点内容✅都支持向量检索都可以基于embedding(向量)做相似度搜索,比如给一段文本、找出最相似的若干条记录。✅都用于语义检索你可以把它们用在RAG(检索增强生成)、ChatwithDocs、智能问答、推荐系统等应用里。✅都支持批量插入、查询都可以批量向数据库中插入文本+向量,然后用向量做top-k检索(如search(k=8))。✅都和LangChain集成它们都可以通过la
- 推荐算法(推广搜)——广告和推荐有什么不同?
导语近几年新兴起一个行业:推广搜。即推荐、广告、搜索算法的简称。各大厂都隐隐将其作为公司核心技术来发展。此文将带领大家探秘广告和推荐有什么区别以及其相似处。再此强调一下,广告算法里面的推荐广告和自然推荐结果里的推荐系统进行对比,但因为广告算法里面还有“搜索广告”,搜索广告和推荐系统差异性就太大了,这里不做讨论。一、不同点1.1本质不同推荐广告和自然推荐本质中要处理的群体和衡量的利益完全不一样。(图
- 知识图谱的个性化智能教学推荐系统(论文+源码)
毕设工作室_wlzytw
python论文项目知识图谱人工智能
目录摘要Abstract目录第1章绪论1.1研究背景及意义1.2国内外研究现状1.2.1知识图谱1.2.2个性化推荐系统1.3本文研究内容及创新点1.4全文组织结构第2章相关理论与技术概述2.1知识图谱2.1.1知识图谱的介绍与发展2.1.2知识图谱的构建2.3协同过滤推荐算法2.2.1推荐算法概述2.2.2Pearson相关系数2.2.3Spearman相关系数2.4Bert模型和Albert模
- Linux下Redis安装配置全攻略(2024最新版)
「已注销」
linuxredis运维
手残党也能搞定的Redis安装指南还在为Linux安装Redis发愁?(别问我怎么知道的)今天这个保姆级教程绝对能让你爽到飞起!从零开始到完全可用只要10分钟,连小白都能轻松上手!(信我,真的)环境准备(超级重要)先确认你的Linux发行版(敲黑板!):#查看系统信息cat/etc/os-release推荐系统:Ubuntu20.04/22.04LTSCentOS7/8RockyLinux8/9安
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- DeepFM算法原理及应用场景
DeepFM(DeepFactorizationMachine)是一种结合了因子分解机(FactorizationMachines,FM)和深度神经网络(DNN)的混合模型,主要用于处理高维稀疏数据(如推荐系统中的点击率预测)。其核心思想是同时捕捉低阶(线性)和高阶(非线性)特征交互。1.算法原理模型结构如下:FM部分:负责捕捉低阶特征交互(如一阶和二阶特征组合)。一阶项:线性特征权重。二阶项:通
- 【AI智能推荐系统】第二篇:深度学习在推荐系统中的架构设计与优化实践
DeepFaye
人工智能深度学习
第二篇:深度学习在推荐系统中的架构设计与优化实践提示语:“从Wide&Deep到Transformer,深度推荐模型如何突破性能瓶颈?本文将揭秘Netflix、淘宝都在用的深度学习推荐架构,手把手教你设计高精度推荐系统!”目录深度学习推荐系统的核心优势主流深度学习推荐架构解析2.1Wide&Deep模型2.2DeepFM与xDeepFM2.3神经协同过滤(NCF)2.4基于Transformer的
- 基于Elasticsearch的短视频平台个性化推荐系统设计与实现
亲爱的非洲野猪
elasticsearch音视频推荐算法
在当今内容爆炸的时代,个性化推荐系统已成为短视频平台的核心竞争力之一。本文将详细介绍如何利用Elasticsearch(ES)构建一个高效、可扩展的短视频个性化推荐系统。一、系统架构概述我们的推荐系统将采用混合推荐策略,结合协同过滤、内容相似度和热度推荐等多种方法。Elasticsearch作为核心搜索引擎和数据存储,将承担以下职责:用户画像存储与查询视频内容索引与检索实时行为日志分析推荐结果计算
- 协同过滤算法:挖掘用户偏好,精准推荐商品
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
1.背景介绍协同过滤(CollaborativeFiltering,CF)作为推荐系统中的重要技术,其核心思想是利用用户和物品间的行为数据,挖掘用户隐性偏好,从而实现精准推荐。自20世纪90年代提出以来,协同过滤算法已经在电子商务、社交媒体、音乐视频等多个领域中广泛应用,取得了显著的推荐效果。协同过滤算法主要分为基于用户的协同过滤和基于物品的协同过滤两种。基于用户的协同过滤通过比较用户间的相似性,
- 协同过滤推荐算法
禺垣
机器学习笔记算法机器学习推荐算法算法机器学习
协同过滤(CollaborativeFiltering)是推荐系统中最经典的算法之一,其核心思想是“物以类聚,人以群分”,即通过分析用户的历史行为数据,找到与目标用户相似的用户群体或相似的物品,从而为目标用户推荐他们可能感兴趣的物品。一、基于用户的协同过滤(User-BasedCF)核心思想:找到与目标用户兴趣相似的其他用户(“邻居”),将这些邻居喜欢的物品推荐给目标用户。步骤:s1.计算用户
- 深度探索 Py2neo:用 Python 玩转图数据库 Neo4j
萧鼎
python基础到进阶教程python数据库neo4j
随着社交网络、推荐系统、知识图谱等应用的普及,图数据库越来越成为解决关系复杂数据问题的重要武器。作为图数据库中的佼佼者,Neo4j凭借其强大的性能和灵活的数据模型,被广泛应用于各种关联密集型场景。而在Python生态中,py2neo是使用最广泛的Neo4j客户端库之一,它简洁直观,封装度高,能够让你在Python中像操作对象一样操作图数据。本文将全面介绍py2neo的使用方法与设计理念,帮助你快速
- Vue2 视频推荐页面:完整布局与动态数据实现 用 Vue2 开发视频推荐页面:简洁优雅的实现方式 Vue2 项目实战:多分类动态内容展示的实现 用 Vue2 打造视频推荐系统:从零开始完整教程 Vu
南北极之间
web前端特效源码cssjavascript网页设计html前端网站首页视频网站
效果图【定制化开发服务,让您的项目领先一步】如有需求,直接私信留下您的联系方式。谢谢。我的邮箱:
[email protected]完整代码以下包括导航栏、分类切换、推荐内容展示等。使用虚拟假数据模拟真实场景,图片用占位符代替。代码实现<html
- ElasticCTR:一键部署的分布式CTR预估解决方案
萧桔格Wilbur
ElasticCTR:一键部署的分布式CTR预估解决方案ElasticCTRElasticCTR,即飞桨弹性计算推荐系统,是基于Kubernetes的企业级推荐系统开源解决方案。该方案融合了百度业务场景下持续打磨的高精度CTR模型、飞桨开源框架的大规模分布式训练能力、工业级稀疏参数弹性调度服务,帮助用户在Kubernetes环境中一键完成推荐系统部署,具备高性能、工业级部署、端到端体验的特点,并且
- 圈子系统公众号app小程序系统源码公众号+圈子小程序:如何用“内容+社交”打造用户闭环生态?
前端
圈子系统:构建"交流→共鸣→成长"的进阶生态一、系统设计理念演进1.0基础交流层话题发布/回复功能基础点赞评论互动简单分类标签系统2.0情感共鸣层情绪标签识别(AI分析内容情感倾向)共鸣指数算法(根据互动深度计算)志同道合推荐系统3.0成长体系层多维能力评估模型个性化成长路径成就勋章系统二、核心技术实现方案1.共鸣引擎#共鸣度计算算法示例defcalculate_resonance(topic):
- FAISS 简介及其与 GPT 的对接(RAG)
言之。
AIfaissgpteasyui
什么是FAISS?FAISS(FacebookAISimilaritySearch)是FacebookAI团队开发的一个高效的相似性搜索和密集向量聚类的库。它主要用于:大规模向量相似性搜索高维向量最近邻检索向量聚类https://github.com/facebookresearch/faissFAISS特别适合处理高维向量数据,能够快速找到与查询向量最相似的向量,广泛应用于推荐系统、图像检索、自
- 产品背景知识——在线推理和离线推理
爱吃芝麻汤圆
#产品背景知识推理
产品背景知识——在线推理和离线推理一、核心区别:从4个维度对比1.数据处理方式与时效性在线推理(实时推理)数据特点:处理实时流入的单条或小批量数据(如用户点击、交易请求)。时效性要求:需在毫秒级到秒级内返回结果,延迟直接影响用户体验或业务决策。典型场景:电商推荐系统(用户浏览商品时实时推荐)、金融风控(交易时实时欺诈检测)。离线推理(批量推理)数据特点:处理历史累积的大规模数据集(如TB级日志、数
- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- 小红书笔记详情API接口概述及JSON数据返回参考
Json_18179014480
APIjson大数据数据库大数据json
前言一、接口概述小红书笔记详情API接口是小红书开放平台提供的一项服务,允许开发者通过编程方式获取小红书上特定笔记的详细信息。该接口的核心功能包括:获取笔记内容:标题、正文、图片、视频等多媒体信息。用户互动数据:点赞数、评论数、收藏数、分享数等。作者信息:作者昵称、头像、粉丝数等。发布信息:发布时间、标签列表等。通过该接口,开发者可以构建内容分析工具、笔记推荐系统、数据爬虫等应用,帮助企业或个人进
- 从0到1构建智能招聘数据引擎:基于 Python 的 BOSS直聘信息采集实战与反爬破解指南
程序员威哥
python开发语言
前言在大数据浪潮席卷的时代,招聘平台蕴藏着海量的岗位信息,揭示着行业走向、人才趋势、薪资结构等核心价值。BOSS直聘作为国内极具代表性的直招平台,其数据对职业分析、市场监测甚至智能推荐系统的构建都有着重要意义。本文将手把手带你打造一个高质量、抗封锁的Python爬虫系统,精准采集BOSS直聘网的岗位数据,并全面解析其中涉及的反爬机制识别、加密参数处理、数据提取与存储等高级技巧,助你在Web数据采集
- 推荐系统的视频特征-视频关键帧特征提取与向量生成
总体流程概览视频文件(.mp4)↓关键帧抽取(FFmpeg/SceneDetect)↓帧图像(.jpg)↓图像模型提取特征(CLIP/CNN/ViT)↓多帧聚合成视频向量(均值池化等)↓向量库/推荐系统模型特征提取推荐:使用OpenAI的CLIP模型CLIP(ContrastiveLanguage-ImagePretraining)适合推荐系统做跨模态建模,对视频封面帧或场景帧提取效果非常好。✅1
- Neo4j 图数据库安装教程(2024最新版)—— Windows / Linux / macOS 全平台指南
2501_91537435
图数据库neo4j数据库windows
Neo4j图数据库安装教程(2024最新版)——Windows/Linux/macOS全平台指南Neo4j是目前最流行的图数据库(GraphDatabase),广泛应用于社交网络、推荐系统、知识图谱等领域。本文将详细介绍Windows、Linux和macOS三大平台的Neo4j安装方法,并包含配置优化、基础使用示例和常见问题解决。一、Neo4j简介1.什么是Neo4j?Neo4j是一个高性能的No
- Python隐式反馈数据集库之implicit使用详解
Rocky006
python开发语言
概要Implicit是一个专注于隐式反馈数据集的协同过滤推荐系统Python库,由BenFrederickson开发。与显式反馈(如用户明确给予的评分)不同,隐式反馈是指用户通过行为间接表达偏好的数据,如点击次数、浏览时长或购买历史。这类数据在实际应用中更为普遍,但也更难以处理。传统推荐系统如Surprise或LightFM虽然功能全面,但在处理大规模稀疏矩阵时性能不佳。Implicit库通过优化
- 【有源码】基于爬虫+python的美食数据分析与可视化flask热门美食推荐系统的设计与实现
Q2643365023
Python大数据python爬虫计算机毕设选题毕业设计源码计算机毕设项目数据分析美食推荐系统
注意:该项目只展示部分功能,如需了解,文末咨询即可。本文目录1.开发环境2系统设计2.1设计背景2.2设计内容3系统展示3.1功能展示视频3.2系统页面4更多推荐5部分功能代码1.开发环境开发语言:Python采用技术:flask、爬虫数据库:MySQL开发环境:PyCharm2系统设计2.1设计背景在现代社会中,人们对美食的兴趣和需求日益增长。互联网和社交媒体的普及使得各种美食信息、评论和推荐变
- Java AI 新纪元:Spring AI 与 Spring AI Alibaba 的崛起
小沛9
SpringAIAlibabaSpringAIjava人工智能springspringaiSAA
此章节没什么营养,只是一个描述,同时也能看到AI的能力(文章基本都是AI进行生成的),小沛觉得开始不写点引言好像差了点什么东西,好像鱼离开了自行车。引言:AI时代对Java开发者的机遇与挑战,Java在AI领域的现状在当今技术飞速发展的时代,人工智能(AI)已不再是遥不可及的未来概念,而是深刻地融入到我们生活的方方面面,从智能推荐系统到自动驾驶,从自然语言处理到计算机视觉,AI正以前所未有的速度改
- 基于Python的京东商品信息采集实战:用Playwright+Pandas打造高效数据抓取工具
Python爬虫项目
2025年爬虫实战项目pythonpandas开发语言爬虫游戏笔记
一、项目背景与目标在当今电商生态中,价格、销量、评论等商品信息对用户和商家来说至关重要。无论是做数据分析、电商监控,还是构建商品推荐系统,第一步都是:获取真实的商品数据。本项目以京东商城搜索结果页为目标,通过构建一个高效、可复用的商品信息采集爬虫系统,实现对商品名称、价格、店铺、评论数、链接等核心信息的提取。二、技术路线概述我们采用如下技术架构:模块技术选型浏览器自动化Playwright(现代、
- 重排利器:行列式点过程(DPP)在推荐系统中的应用
Jay Kay
推荐算法数学建模推荐算法
在推荐系统的重排阶段,我们常面临结果同质化问题——精排结果相似物料扎堆,导致用户体验单调。行列式点过程(DeterminantalPointProcesses,DPP)通过数学建模相关性与多样性的平衡,成为解决该问题的经典方案。一、DPP的核心思想DPP将推荐列表视为一个点过程,其核心是计算子集出现的概率。给定候选集(Z)(精排输出的Top-N物料),DPP定义子集(Y\subseteqZ)出现的
- 推荐算法特征工程实战:用户与物料动态画像构建指南
Jay Kay
推荐算法推荐算法算法机器学习
在推荐系统的特征工程中,动态画像是提升推荐精准性的核心武器。通过捕捉用户行为偏好和物料热度变化,算法能实现千人千面的精准推荐。本文结合两张关键图表,深入解析动态画像的构建方法与工程实践。一、用户动态画像:六大维度精准刻画兴趣偏好用户动态画像基于六个关键维度构建(如表2-1所示),形成"6W"行为模型:用户粒度物料属性时间粒度动作类型统计对象统计方法1.核心维度解析(附典型场景)维度可选值应用场景用
- 信息检索简介——文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2005年8月17日至9月3日在美国加利福尼亚州伯克莱纳举行了SIGIR国际会议(中文全称“计算机信息retrieval国际会议”),这是信息检索领域的顶级会议之一。该会议由ACM主办,主题涵盖了包括文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等多个热门方向。此次会议是第一次将信息检索作为一个学科,并取得重大突破。本文试图对SIGIR进行一个完整的介绍,阐述
- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- embedding模型有哪些?如何选择合适的embedding模型?
行云流水AI笔记
embedding
embedding模型是一种将数据映射到低维空间的模型,常用于自然语言处理、推荐系统、图像识别等领域。以下是一些常见的embedding模型:Word2Vec:CBOW(ContinuousBag-of-Words):通过上下文预测中心词。Skip-Gram:通过中心词预测上下文。GloVe(GlobalVectorsforWordRepresentation):结合了词频统计和Word2Vec的
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发