python pandas 入门进阶

本文是 python pandas 教学,入门介绍 的继续,主要介绍pandas 的过滤,排序,分组统计,子集。

过滤

import pandas as pd
data = {
    'apples': [3, 2, 0, 1], 
    'oranges': [0, 3, 7, 2]
}
purchases = pd.DataFrame(data)
purchases = pd.DataFrame(data, index=['June', 'Robert', 'Lily', 'David'])
fd=purchases[purchases['apples']>=2]
print(fd)

结果为:

        apples  oranges
June         3        0
Robert       2        3

复杂一点的过滤,自定义函数和lambda

import pandas as pd
data = {
    'apples': [3, 2, 0, 1], 
    'oranges': [0, 3, 7, 2]
}
def add(x, y):
    return (x + y)

purchases = pd.DataFrame(data)
purchases = pd.DataFrame(data, index=['June', 'Robert', 'Lily', 'David'])


fd=purchases[purchases['apples']>=2]
fd2=purchases[add(purchases['apples'],purchases['oranges'])>=5]
df3=purchases[lambda x:x['apples']+x['oranges']<5]
print(fd2)

显示为:

        apples  oranges
Robert       2        3
Lily         0        7

df3
Out[150]: 
       apples  oranges
June        3        0
David       1        2

排序

继续上面数据的例子:

按照apples多少排序,缺省是从小到大

df.sort_values(by=['apples'], inplace=True)

显示如下:

        apples  oranges
Lily         0        7
David        1        2
Robert       2        3
June         3        0

反序要怎么写呢?

df.sort_values(by=['apples'], inplace=True, ascending=False)

显示结果:

        apples  oranges
June         3        0
Robert       2        3
David        1        2
Lily         0        7

排序也可以多列,如下:

df.sort_values(by=['apples','oranges'], inplace=True)

这里先按apples排,相同情况下按oranges排, 这里数据少,apples也都不同,所以和上面结果一样。

分组,统计

参考:https://www.shanelynn.ie/summarising-aggregation-and-grouping-data-in-python-pandas/

# Group the data frame by month and item and extract a number of stats from each group
data.groupby(
    ['month', 'item']
).agg(
    {
        # Find the min, max, and sum of the duration column
        'duration': [min, max, sum],
        # find the number of network type entries
        'network_type': "count",
        # minimum, first, and number of unique dates
        'date': [min, 'first', 'nunique']
    }
)

下面图片说明,但我按他输入代码,不对一样。

python pandas 入门进阶_第1张图片

 但下面代码方式我测试过了的。 

data[data['item'] == 'call'].groupby('month').agg(
    # Get max of the duration column for each group
    max_duration=('duration', max),
    # Get min of the duration column for each group
    min_duration=('duration', min),
    # Get sum of the duration column for each group
    total_duration=('duration', sum),
    # Apply a lambda to date column
    num_days=("date", lambda x: (max(x) - min(x)).days)    

实际例子:

import pandas as pd
 
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
   'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
   'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
   'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
   'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
 
grouped = df.groupby('Year')
 
for name,group in grouped:
   print(name)
   print(group)


显示结果:

2014
     Team  Rank  Year  Points
0  Riders     1  2014     876
2  Devils     2  2014     863
4   Kings     3  2014     741
9  Royals     4  2014     701
2015
      Team  Rank  Year  Points
1   Riders     2  2015     789
3   Devils     3  2015     673
5    kings     4  2015     812
10  Royals     1  2015     804
2016
     Team  Rank  Year  Points
6   Kings     1  2016     756
8  Riders     2  2016     694
2017
      Team  Rank  Year  Points
7    Kings     1  2017     788
11  Riders     2  2017     690 
 

子集

下面图片来自:https://www.shanelynn.ie/select-pandas-dataframe-rows-and-columns-using-iloc-loc-and-ix/

python pandas 入门进阶_第2张图片

下面操作需要先运行group 的那个例子。

df.iloc[[0,3,6], [0,2,3]]
Out[36]: 
     Team  Year  Points
0  Riders  2014     876
3  Devils  2015     673
6   Kings  2016     756

df.iloc[:, [0,2,3]]
Out[37]: 
      Team  Year  Points
0   Riders  2014     876
1   Riders  2015     789
2   Devils  2014     863
3   Devils  2015     673
4    Kings  2014     741
5    kings  2015     812
6    Kings  2016     756
7    Kings  2017     788
8   Riders  2016     694
9   Royals  2014     701
10  Royals  2015     804
11  Riders  2017     690

df.iloc[:, 0:2]
Out[38]: 
      Team  Rank
0   Riders     1
1   Riders     2
2   Devils     2
3   Devils     3
4    Kings     3
5    kings     4
6    Kings     1
7    Kings     1
8   Riders     2
9   Royals     4
10  Royals     1
11  Riders     2

df.loc[:5,['Team','Rank','Year']]
Out[49]: 
     Team  Rank  Year
0  Riders     1  2014
1  Riders     2  2015
2  Devils     2  2014
3  Devils     3  2015
4   Kings     3  2014
5   kings     4  2015

df.loc[:5]
Out[50]: 
     Team  Rank  Year  Points
0  Riders     1  2014     876
1  Riders     2  2015     789
2  Devils     2  2014     863
3  Devils     3  2015     673
4   Kings     3  2014     741
5   kings     4  2015     812

其他

输出不显示index

答案链接:https://stackoverflow.com/questions/24644656/how-to-print-pandas-dataframe-without-index

答案是:

print(tmp.loc[:,['dateRep','cases','deaths']].to_string(index=False))

或者

print(tmp.to_string(index=False))

获取Pandas DataFrame的行索引值作为列表

答案链接:https://www.codenong.com/18358938/

答案:

df.index.values.tolist() 

 

你可能感兴趣的:(python)