强化学习策略梯度梳理4-SOTA中(DDPG TD3 SAC SAC-dicrete 附代码)

强化学习策略梯度梳理-SOTA中

  • 强化学习策略梯度梳理-SOTA中
    • 进阶方向2
      • Q-learning
      • DDPG
        • 连续动作空间
        • 离散动作空间 - 待学习
      • TD3(Twin Delayed DDPG)
      • SAC
        • 最大熵强化学习
        • v.s. TD3
        • code
          • 引入一个分布
          • 动作选择
          • critic loss
          • actor loss
          • alpha loss (option)
      • SAC discrete
        • code
          • critic loss
          • actor loss
          • alpha loss

notice!这个系列的梯度回传和前面完全不是一个套路了。

强化学习策略梯度梳理-SOTA中

同前文
这个部分仍然参考周博磊老师的第六节的顺序
主要参考课程 Intro to Reinforcement Learning,Bolei Zhou
相关文中代码 https://github.com/ThousandOfWind/RL-basic-alg.git
DDPG和TD3的实现参考了Addressing Function Approximation Error in Actor-Critic Methods,TD3作者的代码非常清晰明了!
SAC主要参考openai的官方tutorial, pytorch复现版本code , pytorch复现版本2

进阶方向2

Q-learning

这里标出Q-learning只是为了强调DQN的target网络结构和经验池。

然而尽管和DQN关系匪浅,这里的算法都主要适用于连续控制

DDPG

DDPG很好的继承了DQN的特性,如果DQN用的多其实是很好理解DDPG结构的。

  1. critic网络用于估计Q值,利用奖赏值更新
  2. actor网络用于估计动作,利用 − c r i t i c ( s , a c t o r ( s ) ) -critic(s,actor(s)) critic(s,actor(s))更新

连续动作空间

代码这里需要注意的是,和上一个系列不同,DDPG这里actor 和critic网络是分别训练的。

        self.Q = DDPG_Critic(param_set)
        self.actor = DDPG_Actor(param_set)

        self.targetQ = copy.deepcopy(self.Q)
        self.targetA = copy.deepcopy(self.actor)

        self.critic_optimiser = Adam(params=self.Q.parameters(), lr=self.learning_rate)
        self.actor_optimiser = Adam(params=self.actor.parameters(), lr=self.learning_rate)
        currentQ = self.Q(obs, action_index)
        targetQ = (reward + self.gamma * (1-done) * self.targetQ(next_obs, self.targetA(next_obs))).detach()
        critic_loss = F.mse_loss(currentQ, targetQ)
        self.writer.add_scalar('Loss/TD_loss', critic_loss.item(), self.step )


        # Optimize the critic
        self.critic_optimiser.zero_grad()
        critic_loss.backward()
        self.critic_optimiser.step()

        actor_loss = - self.Q(obs, self.actor(obs))
        self.writer.add_scalar('Loss/pi_loss', actor_loss.item(), self.step )

        self.actor_optimiser.zero_grad()
        actor_loss.backward()
        self.actor_optimiser.step()

另外target网络一般采用软更新方式

        for param, target_param in zip(self.Q.parameters(), self.targetQ.parameters()):
            target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)

        for param, target_param in zip(self.actor.parameters(), self.targetA.parameters()):
            target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)

这里有个我一直困惑的问题,当动作时连续的时候显然critic到actor的梯度是通的,但是动作离散时,是怎样向actor回传梯度的呢?
软更新和硬更新各有什么优缺点呢?

离散动作空间 - 待学习

TD3(Twin Delayed DDPG)

这个就有点像Double DQN的扩展版本了
他的两个改进就如同名字

  1. Twin: Q值具有双网络,计算targetQ时,取更小的值
  2. delayed: 用更小的频率更新actor
        currentQ1, currentQ2  = self.Q(obs, action_index)
        targetQ1, targetQ2 = self.targetQ(next_obs, self.targetA(next_obs))
        targetQ = th.min(targetQ1, targetQ2)
        targetQ = (reward + self.gamma * (1-done) * targetQ).detach()
        critic_loss = F.mse_loss(currentQ1, targetQ) + F.mse_loss(currentQ2, targetQ)
        self.writer.add_scalar('Loss/TD_loss', critic_loss.item(), self.step )

        # Optimize the critic
        self.critic_optimiser.zero_grad()
        critic_loss.backward()
        self.critic_optimiser.step()
        
        self.step += 1
        if self.step - self.last_update > self.pi_update_frequncy:
            self.last_update = self.step
            q1, q2 = - self.Q(obs, self.actor(obs))
            actor_loss = - q1

            self.writer.add_scalar('Loss/pi_loss', actor_loss.item(), self.step )

            self.actor_optimiser.zero_grad()
            actor_loss.backward()
            self.actor_optimiser.step()

            for param, target_param in zip(self.Q.parameters(), self.targetQ.parameters()):
                target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)

            for param, target_param in zip(self.actor.parameters(), self.targetA.parameters()):
                target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)

SAC

最大熵强化学习

所谓最大熵是希望最大化策略的熵
H ( P ) = E x ∼ P [ − log ⁡ P ( x ) ] H(P)=\underset{x \sim P}{\mathrm{E}}[-\log P(x)] H(P)=xPE[logP(x)]
可想而知该项会鼓励智能体尽可能的均匀探索环境
以下是SAC的loss方式
L ( ϕ i , D ) = E ( s , a , r , s ′ , d ) ∼ D [ ( Q ϕ i ( s , a ) − y ( r , s ′ , d ) ) 2 ] L\left(\phi_{i}, \mathcal{D}\right)=\underset{\left(s, a, r, s^{\prime}, d\right) \sim \mathcal{D}}{\mathrm{E}}\left[\left(Q_{\phi_{i}}(s, a)-y\left(r, s^{\prime}, d\right)\right)^{2}\right] L(ϕi,D)=(s,a,r,s,d)DE[(Qϕi(s,a)y(r,s,d))2]
y ( r , s ′ , d ) = r + γ ( 1 − d ) ( min ⁡ j = 1 , 2 Q . ϕ targ  , j ( s ′ , a ~ ′ ) − α log ⁡ π θ ( a ~ ′ ∣ s ′ ) , a ~ ′ ∼ π θ ( ⋅ ∣ s ′ ) y\left(r, s^{\prime}, d\right)=r+\gamma(1-d)\left(\min _{j=1,2} Q_{.\phi_{\text {targ }, j}}\left(s^{\prime}, \tilde{a}^{\prime}\right)-\alpha \log \pi_{\theta}\left(\tilde{a}^{\prime} \mid s^{\prime}\right), \quad \tilde{a}^{\prime} \sim \pi_{\theta}\left(\cdot \mid s^{\prime}\right)\right. y(r,s,d)=r+γ(1d)(j=1,2minQ.ϕtarg ,j(s,a~)αlogπθ(a~s),a~πθ(s)

我这里有一个疑惑,一般信息熵是 ∑ p ( x ) log ⁡ p ( x ) \sum p(x)\log p(x) p(x)logp(x) 为什么这边的熵项就只剩一半了啊

v.s. TD3

SAC继承了TD3的双网络特性
但也有以下几点不同:

  1. loss项加入了信息熵
  2. 不需要target actor网络; target Q中,next action 通过当前策略计算
  3. TD3是一个确定策略,而SAC是随机策略,所以不需要对策略进行平滑。

第三项其实我不是特别特别清楚啊,大概意思就是TD3是通过网络直接输出了动作,而SAC其实输出的动作的概率,所以就。。。
Unlike in TD3, there is no explicit target policy smoothing. TD3 trains a deterministic policy, and so it accomplishes smoothing by adding random noise to the next-state actions. SAC trains a stochastic policy, and so the noise from that stochasticity is sufficient to get a similar effect.
but 我没有康到TD3平滑策略的部分呀

code

引入一个分布

首先因为我们希望得到的连续动作自带分布,我们就需要引入这个,具体这个是怎么回事,还没有研究


class TanhNormal(Distribution):
    """
    Represent distribution of X where
        X ~ tanh(Z)
        Z ~ N(mean, std)

    Note: this is not very numerically stable.
    """
    def __init__(self, normal_mean, normal_std, epsilon=1e-6):
        """
        :param normal_mean: Mean of the normal distribution
        :param normal_std: Std of the normal distribution
        :param epsilon: Numerical stability epsilon when computing log-prob.
        """
        self.normal_mean = normal_mean
        self.normal_std = normal_std
        self.normal = Normal(normal_mean, normal_std)
        self.epsilon = epsilon

    def sample_n(self, n, return_pre_tanh_value=False):
        z = self.normal.sample_n(n)
        if return_pre_tanh_value:
            return torch.tanh(z), z
        else:
            return torch.tanh(z)

    def log_prob(self, value, pre_tanh_value=None):
        """

        :param value: some value, x
        :param pre_tanh_value: arctanh(x)
        :return:
        """
        if pre_tanh_value is None:
            pre_tanh_value = torch.log(
                (1+value) / (1-value)
            ) / 2
        return self.normal.log_prob(pre_tanh_value) - torch.log(
            1 - value * value + self.epsilon
        )

    def sample(self, return_pretanh_value=False):
        """
        Gradients will and should *not* pass through this operation.

        See https://github.com/pytorch/pytorch/issues/4620 for discussion.
        """
        z = self.normal.sample().detach()

        if return_pretanh_value:
            return torch.tanh(z), z
        else:
            return torch.tanh(z)

    def rsample(self, return_pretanh_value=False):
        """
        Sampling in the reparameterization case.
        """
        z = (
            self.normal_mean +
            self.normal_std *
            Normal(
                torch.zeros(self.normal_mean.size()),
                torch.ones(self.normal_std.size())
            ).sample()
        )
        z.requires_grad_()

        if return_pretanh_value:
            return torch.tanh(z), z
        else:
            return torch.tanh(z)
动作选择
    def get_action(self, observation, sample=False):
        obs = th.FloatTensor(observation)
        dist = self.actor(obs)
        action = dist.sample() if sample else dist.mean
        action = action.clamp(*self.action_range)
        return action
critic loss
        currentQ1, currentQ2  = self.Q(obs, action_index)

        next_dist = self.actor(obs)
        next_action = next_dist.rsample()
        targetnextQ1, targetnextQ2 = self.targetQ(next_obs, next_action)

        next_log_prob = next_dist.log_prob(next_action).sum(-1, keepdim=True)
        targetV = th.min(targetnextQ1, targetnextQ2) - self.alpha * next_log_prob
        targetQ = (reward + self.gamma * (1-done) * targetV).detach()
        critic_loss = F.mse_loss(currentQ1, targetQ) + F.mse_loss(currentQ2, targetQ)

        # Optimize the critic
        self.critic_optimiser.zero_grad()
        critic_loss.backward()
        self.critic_optimiser.step()
actor loss
            dist = self.actor(obs)
            action = dist.rsample()
            q1, q2 = - self.Q(obs, action)
            q = th.min(q1, q2)
            log_prob = dist.log_prob(action).sum(-1, keepdim=True)

            actor_loss = self.alpha.detach() * log_prob - q

            self.actor_optimiser.zero_grad()
            actor_loss.backward()
            self.actor_optimiser.step()
alpha loss (option)
               self.alpha_optimiser.zero_grad()
                alpha_loss = (self.alpha *
                              (-log_prob - self.target_entropy).detach()).mean()
                alpha_loss.backward()
                self.alpha_optimiser.step()

SAC discrete

因为很多工作都是在这个路线基础上扩展的,甚至蔓延到了离散动作控制问题,所以我们这里就要探究怎么样去离散。

如果只是将离散动作读入网络显然梯度无法回传,所以自然的我们就会想到用动作概率,具体就是说critic不再只输出一维,而是像一般的DQN网络,有 ∣ A ∣ |A| A维,然后和动作概率结合得到Q

code

critic loss
        currentQ1, currentQ2  = self.Q(obs)
        currentQ1 = currentQ1.gather(1, action_index)
        currentQ2 = currentQ2.gather(1, action_index)

        next_action_index, next_action_log_probs, next_pi = self.actor(next_obs)
        target_next_Q = th.min(self.targetQ(next_obs))
        targetV = (next_pi * (target_next_Q - self.alpha * next_action_log_probs)).sum(dim=1, keepdim=True)

        targetQ = (reward + self.gamma * (1-done) * targetV).detach()
        critic_loss = F.mse_loss(currentQ1, targetQ) + F.mse_loss(currentQ2, targetQ)
actor loss
            action_index, action_log_probs, pi = self.actor(obs)
            q1, q2 = - self.Q(obs)
            q = (th.min(q1, q2) * pi).sum(dim=1, keepdim=True)
            entropies = -(action_log_probs * pi).sum(dim=1, keepdim=True)
            actor_loss = (- self.alpha.detach() * entropies - q).mean()
alpha loss
                alpha_loss = (self.alpha *
                              (entropies.detach() - self.target_entropy).detach()).mean()

你可能感兴趣的:(强化学习)