128、TensorFlow元数据MetaData

#tf.Session.run也接收一个可选的参数options
#能够让你来配置训练时的参数
#run_metadata参数让你能够收集关于训练的元信息
#列如你可以使用这些可选项来追踪执行的信息
import tensorflow as tf
y = tf.matmul([[37.0, -23.0], [1.0, 4.0]], tf.random_uniform([2, 2]))
with tf.Session() as sess:
    # Define options for the sess.run() call
    options = tf.RunOptions()
    options.output_partition_graphs = True
    options.trace_level = tf.RunOptions.FULL_TRACE
    
    # Define a container for  the returned metadata
    metadata = tf.RunMetadata()
    
    sess.run(y, options=options, run_metadata=metadata)
    
    # Print the subgraphs that executed on each device
    print(metadata.partition_graphs)
    
    # Print the timings of each operation that executed
    print(metadata.step_stats)
    

下面是输出的结果:

2018-02-17 11:12:58.518912: I C:\tf_jenkins\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
[node {
  name: "MatMul/a"
  op: "Const"
  device: "/job:localhost/replica:0/task:0/device:CPU:0"
  attr {
    key: "dtype"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "value"
    value {
      tensor {
        dtype: DT_FLOAT
        tensor_shape {
          dim {
            size: 2
          }
          dim {
            size: 2
          }
        }
        tensor_content: "\000\000\024B\000\000\270\301\000\000\200?\000\000\200@"
      }
    }
  }
}
node {
  name: "random_uniform/shape"
  op: "Const"
  device: "/job:localhost/replica:0/task:0/device:CPU:0"
  attr {
    key: "dtype"
    value {
      type: DT_INT32
    }
  }
  attr {
    key: "value"
    value {
      tensor {
        dtype: DT_INT32
        tensor_shape {
          dim {
            size: 2
          }
        }
        tensor_content: "\002\000\000\000\002\000\000\000"
      }
    }
  }
}
node {
  name: "random_uniform/RandomUniform"
  op: "RandomUniform"
  input: "random_uniform/shape"
  device: "/job:localhost/replica:0/task:0/device:CPU:0"
  attr {
    key: "T"
    value {
      type: DT_INT32
    }
  }
  attr {
    key: "dtype"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "seed"
    value {
      i: 0
    }
  }
  attr {
    key: "seed2"
    value {
      i: 0
    }
  }
}
node {
  name: "random_uniform/sub"
  op: "Const"
  device: "/job:localhost/replica:0/task:0/device:CPU:0"
  attr {
    key: "dtype"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "value"
    value {
      tensor {
        dtype: DT_FLOAT
        tensor_shape {
        }
        tensor_content: "\000\000\200?"
      }
    }
  }
}
node {
  name: "random_uniform/mul"
  op: "Mul"
  input: "random_uniform/RandomUniform"
  input: "random_uniform/sub"
  device: "/job:localhost/replica:0/task:0/device:CPU:0"
  attr {
    key: "T"
    value {
      type: DT_FLOAT
    }
  }
}
node {
  name: "random_uniform/min"
  op: "Const"
  device: "/job:localhost/replica:0/task:0/device:CPU:0"
  attr {
    key: "dtype"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "value"
    value {
      tensor {
        dtype: DT_FLOAT
        tensor_shape {
        }
        float_val: 0.0
      }
    }
  }
}
node {
  name: "random_uniform"
  op: "Add"
  input: "random_uniform/mul"
  input: "random_uniform/min"
  device: "/job:localhost/replica:0/task:0/device:CPU:0"
  attr {
    key: "T"
    value {
      type: DT_FLOAT
    }
  }
}
node {
  name: "MatMul"
  op: "MatMul"
  input: "MatMul/a"
  input: "random_uniform"
  device: "/job:localhost/replica:0/task:0/device:CPU:0"
  attr {
    key: "T"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "transpose_a"
    value {
      b: false
    }
  }
  attr {
    key: "transpose_b"
    value {
      b: false
    }
  }
}
node {
  name: "_retval_MatMul_0_0"
  op: "_Retval"
  input: "MatMul"
  device: "/job:localhost/replica:0/task:0/device:CPU:0"
  attr {
    key: "T"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "index"
    value {
      i: 0
    }
  }
}
library {
}
versions {
  producer: 24
}
]
dev_stats {
  device: "/job:localhost/replica:0/task:0/device:CPU:0"
  node_stats {
    node_name: "_SOURCE"
    all_start_micros: 1518837178526738
    op_start_rel_micros: 12
    op_end_rel_micros: 12
    all_end_rel_micros: 21
    memory {
      allocator_name: "cpu"
    }
    timeline_label: "_SOURCE = NoOp()"
    scheduled_micros: 1518837178526691
    memory_stats {
    }
  }
  node_stats {
    node_name: "MatMul/a"
    all_start_micros: 1518837178526765
    op_end_rel_micros: 5
    all_end_rel_micros: 7
    memory {
      allocator_name: "cpu"
    }
    output {
      tensor_description {
        dtype: DT_FLOAT
        shape {
          dim {
            size: 2
          }
          dim {
            size: 2
          }
        }
        allocation_description {
          requested_bytes: 16
          allocator_name: "cpu"
          ptr: 1903518068800
        }
      }
    }
    timeline_label: "MatMul/a = Const()"
    scheduled_micros: 1518837178526759
    memory_stats {
      host_persistent_memory_size: 16
      host_persistent_tensor_alloc_ids: -1
    }
  }
  node_stats {
    node_name: "random_uniform/shape"
    all_start_micros: 1518837178526773
    op_start_rel_micros: 1
    op_end_rel_micros: 2
    all_end_rel_micros: 2
    memory {
      allocator_name: "cpu"
    }
    output {
      tensor_description {
        dtype: DT_INT32
        shape {
          dim {
            size: 2
          }
        }
        allocation_description {
          requested_bytes: 8
          allocator_name: "cpu"
          ptr: 1903518066368
        }
      }
    }
    timeline_label: "random_uniform/shape = Const()"
    scheduled_micros: 1518837178526772
    memory_stats {
      host_persistent_memory_size: 8
      host_persistent_tensor_alloc_ids: -1
    }
  }
  node_stats {
    node_name: "random_uniform/sub"
    all_start_micros: 1518837178526780
    op_end_rel_micros: 1
    all_end_rel_micros: 1
    memory {
      allocator_name: "cpu"
    }
    output {
      tensor_description {
        dtype: DT_FLOAT
        shape {
        }
        allocation_description {
          requested_bytes: 4
          allocator_name: "cpu"
          ptr: 1903518066240
        }
      }
    }
    timeline_label: "random_uniform/sub = Const()"
    scheduled_micros: 1518837178526775
    memory_stats {
      host_persistent_memory_size: 4
      host_persistent_tensor_alloc_ids: -1
    }
  }
  node_stats {
    node_name: "random_uniform/min"
    all_start_micros: 1518837178526782
    op_end_rel_micros: 1
    all_end_rel_micros: 2
    memory {
      allocator_name: "cpu"
    }
    output {
      tensor_description {
        dtype: DT_FLOAT
        shape {
        }
        allocation_description {
          requested_bytes: 4
          allocator_name: "cpu"
          ptr: 1903518069120
        }
      }
    }
    timeline_label: "random_uniform/min = Const()"
    scheduled_micros: 1518837178526781
    memory_stats {
      host_persistent_memory_size: 4
      host_persistent_tensor_alloc_ids: -1
    }
  }
  node_stats {
    node_name: "random_uniform/RandomUniform"
    all_start_micros: 1518837178526785
    op_start_rel_micros: 1
    op_end_rel_micros: 11
    all_end_rel_micros: 12
    memory {
      allocator_name: "cpu"
      total_bytes: 16
      peak_bytes: 16
      live_bytes: 16
      allocation_records {
        alloc_micros: 1518837178526792
        alloc_bytes: 16
      }
      allocation_records {
        alloc_micros: 1518837178526870
        alloc_bytes: -16
      }
    }
    output {
      tensor_description {
        dtype: DT_FLOAT
        shape {
          dim {
            size: 2
          }
          dim {
            size: 2
          }
        }
        allocation_description {
          requested_bytes: 16
          allocated_bytes: 16
          allocator_name: "cpu"
          allocation_id: 1
          has_single_reference: true
          ptr: 1903518118336
        }
      }
    }
    timeline_label: "random_uniform/RandomUniform = RandomUniform(random_uniform/shape)"
    scheduled_micros: 1518837178526776
    memory_stats {
    }
  }
  node_stats {
    node_name: "random_uniform/mul"
    all_start_micros: 1518837178526798
    op_start_rel_micros: 1
    op_end_rel_micros: 11
    all_end_rel_micros: 12
    memory {
      allocator_name: "cpu"
    }
    output {
      tensor_description {
        dtype: DT_FLOAT
        shape {
          dim {
            size: 2
          }
          dim {
            size: 2
          }
        }
        allocation_description {
          requested_bytes: 16
          allocated_bytes: 16
          allocator_name: "cpu"
          allocation_id: 1
          ptr: 1903518118336
        }
      }
    }
    timeline_label: "random_uniform/mul = Mul(random_uniform/RandomUniform, random_uniform/sub)"
    scheduled_micros: 1518837178526797
    memory_stats {
    }
  }
  node_stats {
    node_name: "random_uniform"
    all_start_micros: 1518837178526812
    op_end_rel_micros: 8
    all_end_rel_micros: 9
    memory {
      allocator_name: "cpu"
    }
    output {
      tensor_description {
        dtype: DT_FLOAT
        shape {
          dim {
            size: 2
          }
          dim {
            size: 2
          }
        }
        allocation_description {
          requested_bytes: 16
          allocated_bytes: 16
          allocator_name: "cpu"
          allocation_id: 1
          ptr: 1903518118336
        }
      }
    }
    timeline_label: "random_uniform = Add(random_uniform/mul, random_uniform/min)"
    scheduled_micros: 1518837178526810
    memory_stats {
    }
  }
  node_stats {
    node_name: "MatMul"
    all_start_micros: 1518837178526823
    op_end_rel_micros: 45
    all_end_rel_micros: 47
    memory {
      allocator_name: "cpu"
      total_bytes: 16
      peak_bytes: 16
      live_bytes: 16
      allocation_records {
        alloc_micros: 1518837178526826
        alloc_bytes: 16
      }
    }
    output {
      tensor_description {
        dtype: DT_FLOAT
        shape {
          dim {
            size: 2
          }
          dim {
            size: 2
          }
        }
        allocation_description {
          requested_bytes: 16
          allocated_bytes: 16
          allocator_name: "cpu"
          allocation_id: 1
          has_single_reference: true
          ptr: 1903518061312
        }
      }
    }
    timeline_label: "MatMul = MatMul(MatMul/a, random_uniform)"
    scheduled_micros: 1518837178526821
    memory_stats {
    }
  }
  node_stats {
    node_name: "_retval_MatMul_0_0"
    all_start_micros: 1518837178526872
    op_start_rel_micros: 1
    op_end_rel_micros: 3
    all_end_rel_micros: 5
    memory {
      allocator_name: "cpu"
    }
    timeline_label: "_retval_MatMul_0_0 = _Retval(MatMul)"
    scheduled_micros: 1518837178526870
    memory_stats {
    }
  }
}

 

转载于:https://www.cnblogs.com/weizhen/p/8451503.html

你可能感兴趣的:(128、TensorFlow元数据MetaData)