图像分割指的是将数字图像细分为多个图像子区域的过程,在OpenCv中实现了三种跟图像分割相关的算法,它们分别是:分水岭分割算法、金字塔分割算法以及均值漂移分割算法。
分水岭分割算法
分水岭分割算法需要您或者先前算法提供标记,该标记用于指定哪些大致区域是目标,哪些大致区域是背景等等;分水岭分割算法的分割效果严重依赖于提供的标记。OpenCv中的函数cvWatershed实现了该算法
金字塔分割算法
金字塔分割算法由cvPrySegmentation所实现,该函数的使用很简单;需要注意的是图像的尺寸以及金字塔的层数,图像的宽度和高度必须能被2整除,能够被2整除的次数决定了金字塔的最大层数
均值漂移分割算法
均值漂移分割算法由cvPryMeanShiftFiltering所实现,均值漂移分割的金字塔层数只能介于[1,7]之间
友情链接一下,个人感觉比较好的这方面博客:
http://www.cnblogs.com/xrwang/archive/2010/02/28/ImageSegmentation.html
效果图:
#include "cv.h"
#include "highgui.h"
#include
IplImage* image[2] = { 0, 0 }, *image0 = 0, *image1 = 0;
CvSize size;
int w0, h0,i;
int threshold1, threshold2;
int l,level = 4;
int sthreshold1, sthreshold2;
int l_comp;
int block_size = 1000;
float parameter;
double threshold;
double rezult, min_rezult;
CvFilter filter = CV_GAUSSIAN_5x5;
CvConnectedComp *cur_comp, min_comp;
CvSeq *comp;
CvMemStorage *storage;
CvPoint pt1, pt2;
void ON_SEGMENT(int a)
{
cvPyrSegmentation(image0, image1, storage, &comp,
level, threshold1+1, threshold2+1);
/*l_comp = comp->total;
i = 0;
min_comp.value = cvScalarAll(0);
while(i
cur_comp = (CvConnectedComp*)cvGetSeqElem ( comp, i );
if(fabs(255- min_comp.value.val[0])>
fabs(255- cur_comp->value.val[0]) &&
fabs(min_comp.value.val[1])>
fabs(cur_comp->value.val[1]) &&
fabs(min_comp.value.val[2])>
fabs(cur_comp->value.val[2]) )
min_comp = *cur_comp;
i++;
}*/
cvShowImage("Segmentation", image1);
}
int main( int argc, char** argv )
{
char* filename = argc == 2 ? argv[1] : (char*)"fruits.jpg";
if( (image[0] = cvLoadImage( filename, 1)) == 0 )
return -1;
cvNamedWindow("Source", 0);
cvShowImage("Source", image[0]);
cvNamedWindow("Segmentation", 0);
storage = cvCreateMemStorage ( block_size );
image[0]->width &= -(1<
image0 = cvCloneImage( image[0] );
image1 = cvCloneImage( image[0] );
// 对彩色图像进行分割
l = 1;
threshold1 =255;
threshold2 =30;
ON_SEGMENT(1);
sthreshold1 = cvCreateTrackbar("Threshold1", "Segmentation", &threshold1, 255,
ON_SEGMENT);
sthreshold2 = cvCreateTrackbar("Threshold2", "Segmentation", &threshold2, 255,
ON_SEGMENT);
cvShowImage("Segmentation", image1);
cvWaitKey(0);
cvDestroyWindow("Segmentation");
cvDestroyWindow("Source");
cvReleaseMemStorage(&storage );
cvReleaseImage(&image[0]);
cvReleaseImage(&image0);
cvReleaseImage(&image1);
return 0;
}