图论算法-求(有向)图中任意两点间所有路径

1建图:

     图类中包括如下信息:顶点集合,邻接矩阵。

     节点类中包括如下信息:是否被访问过,节点的名称,从这个节点访问到下一个节点的集合


          


2 算法思路

  A 将始点设置为已访问,将其入栈

  B 查看栈顶节点V在图中,有没有可以到达、且没有入栈、且没有从这个节点V出发访问过的节点

  C 如果有,则将找到的这个节点入栈

  D 如果没有,则将节点V访问到下一个节点的集合中每个元素赋值为零,V出栈

  E 当栈顶元素为终点时,设置终点没有被访问过,打印栈中元素,弹出栈顶节点

  F 重复执行B – E,直到栈中元素为空


package util;

public class Graph {

	private Vertex vertexList[]; // list of vertices
	private int adjMat[][]; // adjacency matrix

	private int nVerts;
	private static int MAX_VERTS = 7; // n个点

	int i = 0;
	int j = 0;

	public Vertex[] getVertexList() {
		return vertexList;
	}

	public int[][] getAdjMat() {
		return adjMat;
	}

	public int getN() {
		return MAX_VERTS;
	}

	public Graph(int index) {
		adjMat = new int[MAX_VERTS][MAX_VERTS]; // 邻接矩阵
		vertexList = new Vertex[MAX_VERTS]; // 顶点数组
		nVerts = 0;

		for (i = 0; i < MAX_VERTS; i++) {
			for (j = 0; j < MAX_VERTS; j++) {
				adjMat[i][j] = 0;
			}
		}

		addVertex('A');
		addVertex('B');
		addVertex('C');
		addVertex('D');
		addVertex('E');
		addVertex('F');
		addVertex('G');

		addEdge(0, 1);
		addEdge(0, 2);
		addEdge(1, 4);
		addEdge(2, 0);
		addEdge(2, 5);
		addEdge(3, 0);
		addEdge(3, 2);
		addEdge(3, 3);
		addEdge(4, 1);
		addEdge(4, 2);
		addEdge(5, 6);
		addEdge(6, 3);

		switch (index) {
		case 0:
			break;
		case 1:
			delEdge(4, 2);
			break;
		default:
			break;
		}
	}

	private void delEdge(int start, int end) {
		adjMat[start][end] = 0;
	}

	private void addEdge(int start, int end) {// 有向图,添加边
		adjMat[start][end] = 1;
		// adjMat[end][start] = 1;
	}

	public void addVertex(char lab) {
		vertexList[nVerts++] = new Vertex(lab);// 添加点
	}

	public char displayVertex(int i) {
		return vertexList[i].getLabel();
	}

	public boolean displayVertexVisited(int i) {
		return vertexList[i].WasVisited();
	}

	public void printGraph() {
		for (i = 0; i < MAX_VERTS; i++) {
			System.out.print("第" + displayVertex(i) + "个节点:" + " ");

			for (j = 0; j < MAX_VERTS; j++) {
				System.out.print(displayVertex(i) + "-" + displayVertex(j)
						+ ":" + adjMat[i][j] + " ");
			}
			System.out.println();
		}

	}

}

import java.util.ArrayList;

public class Vertex {

	boolean wasVisited; // 是否遍历过
	public char label; // 节点名称
	ArrayList allVisitedList;// 节点已访问过的顶点

	public void setAllVisitedList(ArrayList allVisitedList) {
		this.allVisitedList = allVisitedList;
	}

	public ArrayList getAllVisitedList() {
		return allVisitedList;
	}

	public boolean WasVisited() {
		return wasVisited;
	}

	public void setWasVisited(boolean wasVisited) {
		this.wasVisited = wasVisited;
	}

	public char getLabel() {
		return label;
	}

	public void setLabel(char label) {
		this.label = label;
	}

	public Vertex(char lab) // constructor
	{
		label = lab;
		wasVisited = false;
	}

	public void setVisited(int j) {
		allVisitedList.set(j, 1);

	}

}


import util.Graph;

public class Main {

	public static void main(String[] args) {
        //第几张图,有两张(0,1),起点序号(0-6),终点序号(0-6)
		AF operation = new AF(new Graph(0), 3, 6);
		operation.getResult();

	}
}

源码下载: http://download.csdn.net/detail/ha000/9616787

你可能感兴趣的:(路径)