Tensorflow1 minist 手写数字识别

1、导入相关python包

import numpy as np
import gzip
import tensorflow as tf
import matplotlib.pyplot as plt
from tqdm import tqdm
from tensorflow.python import pywrap_tensorflow
from tensorflow.python.framework import graph_util
from tensorflow.python.platform import gfile

2、数据读取与显示

def data_read(filename1,filename2,num_images):
    IMAGE_SIZE = 28
    NUM_CHANNELS = 1
    PIXEL_DEPTH = 255
    #加载图像:
    with gzip.open(filename1) as bytestream:
        #每个像素存储在文件中的大小为16bits
        bytestream.read(16) 
        buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS)
        #.astype(np.float32)方法修改数组数据类型
        data = np.frombuffer(buf, dtype=np.uint8).astype(np.float32) 
        #像素值[0, 255]被调整到[-0.5, 0.5]
        data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
        #调整为4维张量[image index, y, x, channels]
        data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)
        
    #加载标签:
    with gzip.open(filename2) as bytestream:
        #每个标签存储在文件中的大小为8bits
        bytestream.read(8) 
        buf = bytestream.read(1 * num_images)
        labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64)
        
    return data,labels

train_num = 60000
test_num = 10000
batch_size = 100
train_data,train_labels = data_read('./minist_data/train-images-idx3-ubyte.gz','./minist_data/train-labels-idx1-ubyte.gz',60000)
test_data,test_labels = data_read('./minist_data/t10k-images-idx3-ubyte.gz','./minist_data/t10k-labels-idx1-ubyte.gz',10000)
print('训练集参数:',train_data.shape,train_labels.shape)
print('测试集参数:',test_data.shape,test_labels.shape)

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(np.squeeze(train_data[i]), cmap=plt.cm.binary)
    plt.xlabel(train_labels[i])
plt.show()

Tensorflow1 minist 手写数字识别_第1张图片

3、搭建网络,tf.get_variable用于获取或者创建变量,当with tf.variable_scope(name,reuse)中reuse=False时为在命名空间创建变量,如果该变量已经存在则会报错,为True时将会在命名空间中获取变量,如果没有获取到会报错。

class minist_inference(object):
    
    def __init__(self,input_image,trainable,regularizer=None):
        
        self.num_class = 10
        self.output = self.build_network(input_image,trainable,regularizer)
    
    def convolution(self,name,input_tensor,filter_shape,strides,padding,activate=True,bn=True):

        with tf.variable_scope(name):
            weights = tf.get_variable("weight", filter_shape,initializer=tf.truncated_normal_initializer(stddev=0.1))
            input_tensor = tf.nn.conv2d(input_tensor, weights, strides, padding)
            
            if bn == True:
                input_tensor = tf.layers.batch_normalization(input_tensor, beta_initializer=tf.zeros_initializer(),
                                                 gamma_initializer=tf.ones_initializer(),
                                                 moving_mean_initializer=tf.zeros_initializer(),
                                                 moving_variance_initializer=tf.ones_initializer(), training=True)
            else:  
                biases = tf.get_variable("bias", filter_shape[-1], initializer=tf.constant_initializer(0.0))
                input_tensor = tf.nn.bias_add(input_tensor, biases)
                
            if activate == True:input_tensor = tf.nn.relu(input_tensor)
            print(input_tensor.name,input_tensor.shape)
            
        return input_tensor
    
    def pool(self,name,input_tensor,ksize,strides,padding,flatten=False):
        
        with tf.name_scope(name):
            input_tensor = tf.nn.max_pool(input_tensor, ksize, strides, padding)
            print(input_tensor.name,input_tensor.shape)
            
        return input_tensor
            
    def flatten(self,name,input_tensor):
        
        with tf.name_scope(name):
            input_tensor_shape = input_tensor.get_shape().as_list()
            nodes = input_tensor_shape[1] * input_tensor_shape[2] * input_tensor_shape[3]
            input_tensor = tf.reshape(input_tensor, [-1, nodes])
            print(input_tensor.name,input_tensor.shape)
            
        return input_tensor
        

    def full_connect(self,name,input_tensor,size,regularizer,trainable,softmax):
        
        with tf.variable_scope(name):
            weights = tf.get_variable("weight", [input_tensor.get_shape().as_list()[-1], size],
                                          initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None: tf.add_to_collection('losses', regularizer(weights))
            biases = tf.get_variable("bias", [size], initializer=tf.constant_initializer(0.1))
    
            input_tensor = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
            if trainable == True: input_tensor = tf.nn.dropout(input_tensor, 0.5)
            if softmax == True: input_tensor = tf.nn.softmax(input_tensor)
            print(input_tensor.name,input_tensor.shape)
            
        return input_tensor
    
    def build_network(self,input_image,trainable,regularizer=None):
        
        print(input_image.name)
        input_image = self.convolution('conv1',input_image,[3,3,1,32],[1,1,1,1],'SAME')
        input_image = self.pool('pool1',input_image,[1,2,2,1],[1,2,2,1],'VALID')
        input_image = self.convolution('conv2',input_image,[3,3,32,64],[1,1,1,1],'SAME')
        input_image = self.pool('pool2',input_image,[1,2,2,1],[1,2,2,1],'VALID',True)
        input_image = self.flatten('flatten1',input_image)
        input_image = self.full_connect('fc1',input_image,512,regularizer,trainable,False)
        input_image = self.full_connect('fc2',input_image,10,regularizer,False,True)
        
        return input_image

 4、数据准备,定义具有迭代器方法的类,注意在__init__函数中,一定要将数据随机打乱,不然网络很难训练。

class dataset(object):
    
    def __init__(self,datas,labels,batch_size):
        
        ix = np.arange(datas.shape[0])
        np.random.shuffle(ix)
        self.labels = train_labels.take(ix,0)
        self.datas = train_data.take(ix,0)
        self.batch_size = batch_size
        self.batch_num = int(np.ceil(datas.shape[0] / batch_size))
        self.res = datas.shape[0] % batch_size
        self.batch_count = 0
        
    def __iter__(self):
        
        return self
    
    def __next__(self):
        
        with tf.device('/cpu:0'):
            if(self.res!=0):
                batch_image = self.datas[self.datas.shape[0]-self.res:,:]
                batch_label = self.labels[self.labels.shape[0]-self.res:]
                self.res = 0
                return batch_image,batch_label
            else:
                if self.batch_count < self.batch_num:
                    batch_image = self.datas[self.batch_count*self.batch_size:(1+self.batch_count)*self.batch_size,:]
                    batch_label = self.labels[self.batch_count*self.batch_size:(1+self.batch_count)*self.batch_size]
                    self.batch_count += 1
                    return batch_image,batch_label
                else:
                    self.batch_count = 0
                    raise StopIteration

5、模型训练与保存

#重置默认的计算图 
tf.reset_default_graph()

#设定占位符
x = tf.placeholder(tf.float32, [None,28,28,1])
training = tf.placeholder(tf.bool)
y_ = tf.placeholder(tf.int64, [None])

#设定正则化函数
regularizer = tf.contrib.layers.l2_regularizer(0.001)

#前向计算
model = minist_inference(x,training,regularizer)
y =  model.output           

#定义损失函数:交叉熵损失与正则化损失
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=y_)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))

#定义优化器
Optimizer = tf.train.AdamOptimizer().minimize(loss)

#计算网络输出精度
accuracy = tf.equal(tf.argmax(y,1),y_)
accuracy = tf.reduce_mean(tf.cast(accuracy,tf.float32))

#定义网络保存类
saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(5):
        aver_train_acc = []
        aver_train_loss = []
        train_dataset = dataset(train_data,train_labels,batch_size)
        pbar = tqdm(train_dataset)
        for traindata in pbar:
            _, loss_value, train_acc = sess.run([Optimizer, loss, accuracy], feed_dict={x: traindata[0], training: False, y_: traindata[1]})
            aver_train_acc.append(train_acc)
            aver_train_loss.append(loss_value)
        test_acc = sess.run(accuracy, feed_dict={x: test_data, training: False, y_: test_labels})
        print('\n the iter is {},the aver-loss is {},the aver-train_acc is {},the test_acc is {}'
              .format(i,np.mean(aver_train_loss),np.mean(aver_train_acc),test_acc))
    
    saver.save(sess,'./minist.ckpt')

 Tensorflow1 minist 手写数字识别_第2张图片

6、模型加载与测试

def plot_image(i, predictions_array, true_label, img):
    predictions_array, true_label, img = predictions_array, true_label[i], img[i]
    plt.grid(False)
    plt.xticks([])
    plt.yticks([])

    plt.imshow(np.squeeze(img), cmap=plt.cm.binary)

    predicted_label = np.argmax(predictions_array)
    if predicted_label == true_label:
        color = 'blue'
    else:
        color = 'red'

    plt.xlabel("{} {:2.0f}% ({})".format(predicted_label,
                                100*np.max(predictions_array),
                                true_label),
                                color=color)

def plot_value_array(i, predictions_array, true_label):
    predictions_array, true_label = predictions_array, true_label[i]
    plt.grid(False)
    plt.xticks(range(10))
    plt.yticks([])
    thisplot = plt.bar(range(10), predictions_array, color="#777777")
    plt.ylim([0, 1])
    predicted_label = np.argmax(predictions_array)

    thisplot[predicted_label].set_color('red')
    thisplot[true_label].set_color('blue')

tf.reset_default_graph()
x = tf.placeholder(tf.float32, [None,28,28,1])
model = minist_inference(x,trainable=False,regularizer=None)
y = model.output
saver = tf.train.Saver()
with tf.Session() as sess:
    saver.restore(sess,'./minist.ckpt')
    test_out = sess.run(y,feed_dict={x:test_data})

num_rows = 7
num_cols = 7
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
    plt.subplot(num_rows, 2*num_cols, 2*i+1)
    plot_image(i, test_out[i], test_labels, test_data)
    plt.subplot(num_rows, 2*num_cols, 2*i+2)
    plot_value_array(i, test_out[i], test_labels)
plt.tight_layout()
plt.show()

Tensorflow1 minist 手写数字识别_第3张图片

7、查看ckpt文件中的网络信息——网络参数与网络节点变量

reader=pywrap_tensorflow.NewCheckpointReader('./minist.ckpt')
var_to_shape_map=reader.get_variable_to_shape_map()
param_dict={}
for key in var_to_shape_map:
    print('param_name',key)
    ckpt_data=np.array(reader.get_tensor(key))
    param_dict[key] = ckpt_data
    

meta_graph = tf.train.import_meta_graph("./minist.ckpt.meta")
with tf.Session()as sess:
    meta_graph.restore(sess,"./minist.ckpt")
    tensor_name_list = [tensor.name for tensor in tf.get_default_graph().as_graph_def().node]
    for tensor_name in tensor_name_list:
        print('tensor_name',tensor_name)

8、保存为pb文件

#重置默认的计算图
tf.reset_default_graph()
#导入计算图
saver = tf.train.import_meta_graph('./minist.ckpt.meta')
with tf.Session() as sess:
    saver.restore(sess,'./minist.ckpt')
    graph_def = tf.get_default_graph().as_graph_def()
    #注意['Placeholder','fc2/Softmax']为输入节点与输出节点
    output_graph_def = graph_util.convert_variables_to_constants(sess, graph_def, ['Placeholder','fc2/Softmax'])
    with tf.gfile.GFile("./minst.pb", "wb") as f:
           f.write(output_graph_def.SerializeToString())

Tensorflow1 minist 手写数字识别_第4张图片

9、利用pb模型进行测试

with tf.Session() as sess:
    model_filename = "./minst.pb"
    with gfile.FastGFile(model_filename, 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    #result[0]对应输入占位符,result[1]对应输出结果
    result = tf.import_graph_def(graph_def, return_elements=["Placeholder:0","fc2/Softmax:0"])
    test_out = sess.run(result[1],feed_dict={result[0]:test_data})

num_rows = 7
num_cols = 7
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
    plt.subplot(num_rows, 2*num_cols, 2*i+1)
    plot_image(i, test_out[i], test_labels, test_data)
    plt.subplot(num_rows, 2*num_cols, 2*i+2)
    plot_value_array(i, test_out[i], test_labels)
plt.tight_layout()
plt.show()

Tensorflow1 minist 手写数字识别_第5张图片

你可能感兴趣的:(tensorflow1,tensorflow,深度学习,python,图像识别)