- Yolo系列之Yolo的基本理解
是十一月末
YOLOpython开发语言yolo
YOLO的基本理解目录YOLO的基本理解1YOLO1.1概念1.2算法2单、多阶段对比2.1FLOPs和FPS2.2one-stage单阶段2.3two-stage两阶段1YOLO1.1概念YOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位
- 深度学习与目标检测系列(六) 本文约(4.5万字) | 全面解读复现ResNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorch人工智能ResNet残差连接残差网络
文章目录解读Abstract—摘要翻译精读主要内容Introduction—介绍翻译精读背景RelatedWork—相关工作ResidualRepresentations—残差表达翻译精读主要内容ShortcutConnections—短路连接翻译精读主要内容DeepResidualLearning—深度残差学习ResidualLearning—残差学习翻译精读ResNet目的以前方法本文改进本质
- 深度学习与目标检测系列(三) 本文约(4万字) | 全面解读复现AlexNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorchAlexNet人工智能
文章目录解读Abstract-摘要翻译精读主要内容1.Introduction—前言翻译精读主要内容:本文主要贡献:2.TheDataset-数据集翻译精读主要内容:ImageNet简介:图像处理方法:3.TheArchitecture—网络结构3.1ReLUNonlinearity—非线性激活函数ReLU翻译精读传统方法及不足本文改进方法本文的改进结果3.2TrainingonMultipleG
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- 目标检测中归一化的目的?
林语微光
kaggle目标检测目标跟踪人工智能
在目标检测任务中,归一化坐标和尺寸时需要除以图像的宽度和高度,主要有以下几个原因:1.统一尺度不同图像可能具有不同的宽度和高度。通过将坐标和尺寸除以图像的宽度和高度,可以将所有图像的标注信息统一到相同的尺度范围([0,1])。这使得模型在训练和推理时能够处理任意尺寸的图像,而不需要关心图像的具体像素尺寸。2.位置和尺寸的相对性归一化后的坐标和尺寸是相对于图像尺寸的,而不是绝对像素值。这种相对性使得
- YOLO魔改之频率分割模块(FDM)
清风AI
YOLO算法魔改系列YOLO人工智能计算机视觉目标检测python深度学习
目标检测原理目标检测是一种将目标分割和识别相结合的图像处理技术,旨在从图像中定位并识别特定目标。深度学习方法,如FasterR-CNN和YOLO系列,已成为主流解决方案。这些方法通常采用两阶段或单阶段策略,通过卷积神经网络(CNN)提取特征并进行分类和定位。在小目标检测中,为克服分辨率低和特征不明显的问题,模型设计中会特别注重特征融合和多尺度处理,以增强对小目标的感知能力。YOLOv8基础YOLO
- 目标检测YOLO实战应用案例100讲-基于毫米波雷达与摄像头协同的道路目标检测与识别(续)
林聪木
目标检测YOLO人工智能
目录3.2实测数据采集与分析3.2.1回波数据处理3.2.2毫米波雷达数据采集实验3.3基于传统图像特征的目标识别算法3.3.1基于灰度共生矩阵的时频图特征提取3.3.2支持向量机分类器3.3.3实验及结果分析3.4基于卷积神经网络的目标识别算法3.4.1卷积神经网络的基本理论3.4.2卷积神经网络框架设计3.4.3实验及结果分析基于图像的目标检测算法4.1目标检测算法一般流程4.2典型目标检测算
- Python 的 ultralytics 库详解
白.夜
人工智能
ultralytics是一个专注于计算机视觉任务的Python库,尤其以YOLO(YouOnlyLookOnce)系列模型为核心,提供了简单易用的接口,支持目标检测、实例分割、姿态估计等任务。本文将详细介绍ultralytics库的功能、安装方法、核心模块以及使用示例。1.ultralytics库简介ultralytics库由Ultralytics团队开发,旨在为YOLO系列模型提供高效、灵活且易
- 【保姆级视频教程(一)】YOLOv12环境配置:从零到一,手把手保姆级教程!| 小白也能轻松玩转目标检测!
一只云卷云舒
YOLOv12保姆级通关教程YOLOYOLOv12flashattentionGPU计算能力算力
【2025全站首发】YOLOv12环境配置:从零到一,手把手保姆级教程!|小白也能轻松玩转目标检测!文章目录1.FlashAttentionWindows端WHL包下载1.1简介1.2下载链接1.3国内镜像站1.4安装方法2.NVIDIAGPU计算能力概述2.1简介2.2计算能力版本与GPU型号对照表2.2.1CUDA-EnabledDatacenterProducts2.2.2CUDA-Enab
- yolov8的第一次实验报告
算法宇宙
YOLO人工智能计算机视觉
1.实验概述实验名称:占道经营目标检测模型实验目标:提高模型的精确率(Precision)和召回率(Recall),使其接近1。实验日期:[2025-01-16]2.数据集数据集名称:[datasets]数据集大小:[2.68Gb]数据集描述:[数据集主要分两个类别:zdjy_ld,zdjy_gd]注释:占道经营流动,占道经营固定3.模型配置3.1基础配置·模型类型:YOLOv8·预训练模型:YO
- YOLOv8 的简介 及C#中如何简单应用YOLOv8
码上有潜
YOLOv8YOLO
YOLOv8是YOLO(YouOnlyLookOnce)系列中的最新版本,是一种用于目标检测和图像分割的深度学习模型。YOLO模型以其快速和准确的目标检测性能而著称,广泛应用于实时应用程序中。主要特点高效性:YOLOv8在保持高检测速度的同时,进一步提高了检测精度。端到端训练:可以直接从图像输入端到分类结果输出,简化了训练和部署过程。改进的架构:包括更深的网络结构、更复杂的特征提取方法以及更高效的
- Yolov11目标检测(ultralytics)
@M_J_Y@
目标检测YOLO目标检测人工智能
Yolov11目标检测(ultralytics)1.克隆仓库2.安装环境依赖3.训练、验证、推理以及onnx模型导出1.克隆仓库从官网下载Yolov11到本地。
[email protected]:ultralytics/ultralytics.git2.安装环境依赖pipinstall-e.-ihttps://pypi.mirrors.ustc.edu.cn/simple/3.训练、验证
- 使用 labelImg 制作YOLO系列目标检测数据集(
2401_89791028
YOLO目标检测人工智能
文章转载自K同学,谨防原文失效可参考link1和link2和link3LabelImg介绍LabelImg支持文件夹的导入,在标完一张后,在左侧选择NextImage就可以切换到下一张继续了。输出格式部分,目前LabelImg支持YOLO和PascalVOC2种格式,前者标签文件后缀是.txt件,而后者标签文件后缀是.xml件。标签保存在对应的labels文件夹下,与images中的图片文件名一一
- YOLOv8 改进:添加 GAM 注意力机制
鱼弦
人工智能时代YOLO
YOLOv8改进:添加GAM注意力机制引言在目标检测领域,YOLO(YouOnlyLookOnce)网络因其速度和准确性被广泛应用。然而,随着场景的复杂化,仅仅依靠卷积特征可能不足以捕捉图像中的重要信息。引入注意力机制,如GAM(GlobalAttentionMechanism),可以有效提高模型对关键区域的关注,从而提升检测性能。技术背景GAM是一种全局注意力机制,通过全局信息聚合和自适应权重分
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?
努力毕业的小土博^_^
AI算法题库人工智能计算机视觉算法深度学习神经网络目标检测
【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?前言多尺度训练核心思想:优点与注意点:多尺度测试核心思想:优点与注意点:综合作用参考示例总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上
- 从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(2)消息队列与消息中间件
shiter
人工智能系统解决方案与技术架构人工智能深度学习音视频
文章大纲原始视频队列Python内存视频缓存优化方案(4GB以内)一、核心参数设计二、内存管理实现三、性能优化策略四、内存占用验证五、高级优化技巧六、部署建议检测结果队列YOLO检测结果队列技术方案一、技术选型矩阵二、核心实现代码三、性能优化策略四、可视化方案对比五、部署建议逻辑判定队列时间片图论时间序列大模型引入参考文献原始视频队列想要在单机内存中缓存1-5分钟的视频片段,python技术栈的话
- YOLOv5+UI界面在车辆检测中的应用与实现
深度学习&目标检测实战项目
YOLOv5实战项目YOLOui分类数据挖掘目标跟踪人工智能
1.引言随着智能交通系统(ITS)的快速发展,车辆检测已成为计算机视觉领域的重要研究方向。车辆检测技术广泛应用于交通流量监控、车辆违章抓拍、无人驾驶等场景中。近年来,深度学习技术的突破,特别是卷积神经网络(CNN)的崛起,使得目标检测技术取得了显著进展。其中,YOLO(YouOnlyLookOnce)系列模型以其高效的实时检测能力和出色的性能成为车辆检测领域的首选方法之一。在本文中,我们将基于YO
- YOLO优化之扫描融合模块(SimVSS Block)
清风AI
人工智能计算机视觉YOLO目标检测深度学习目标跟踪
研究背景在自动驾驶技术快速发展的背景下,目标检测作为其核心组成部分面临着严峻挑战。驾驶场景中目标尺度和大小的巨大差异,以及视觉特征不显著且易受噪声干扰的问题,对辅助驾驶系统的安全性构成了潜在威胁。传统的卷积神经网络(CNN)虽然在目标检测领域取得了显著进展,但仍存在局限性,如局部关注性导致难以有效检测不同尺度的目标。为克服这些问题,研究人员开始探索将状态空间模型(SSM)引入目标检测领域,以期提高
- 深入探究YOLO系列的骨干网路
编码实践
YOLO深度学习计算机视觉
深入探究YOLO系列的骨干网路YOLO系列是目标检测领域中非常知名的算法。其通过将整个图像作为输入,并且直接在图像上通过一个单独的神经网络输出每个检测框的类别预测和边界框信息。为了更好地理解YOLO系列,我们需要先了解它所使用的骨干网路。骨干网络是深度学习模型中的核心部分,负责提取图像的特征。如今常用的骨干网络有VGG、ResNet和MobileNet等。YOLO系列算法采用的是Darknet骨干
- 《Hello YOLOv8从入门到精通》4, 模型架构和骨干网络Backbone调优实践
Jagua
YOLO
YOLOv8是由Ultralytics开发的最先进的目标检测模型,其模型架构细节包括骨干网络(Backbone)、颈部网络(Neck)和头部网络(Head)三大部分。一、骨干网络(Backbone)Backbone部分负责特征提取,采用了一系列卷积和反卷积层,同时使用了残差连接和瓶颈结构来减小网络的大小并提高性能。YOLOv8的Backbone参考了CSPDarkNet结构,的增强版本,并结合了其
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- 目标检测中衡量模型速度和精度的指标:FPS和mAP
asdfg1258963
目标检测_ai目标检测人工智能
“FPS”和“mAP”分别衡量了模型的速度和精度。FPS(FramesPerSecond)定义:FPS是“每秒传输帧数”的缩写,用于衡量计算机视觉系统(如目标检测、图像识别等)的实时性能。它表示系统每秒钟能够处理的图像或视频帧的数量。重要性:在实时应用中,如自动驾驶、视频监控等,FPS是一个关键指标。高FPS意味着系统能够快速处理输入的图像数据,实现实时响应。计算方式:FPS可以通过以下公式计算:
- 机器学习(二) 本文(2.5万字) | KNN算法原理及Python复现 |
小酒馆燃着灯
机器学习算法k近邻算法
文章目录一KNN算法原理二KNN三要素三机器学习中标准化四KNN分类预测规则五KNN回归预测规则六KNN算法实现方式七KDTree7.1构造KDtree7.2KDtree查找最近邻八KNN特点九KNN算法实现案例一案例二1.机器学习2.深度学习与目标检测3.YOLOv54.YOLOv5改进5.YOLOv8及其改进6.Python与PyTorch7.工具8.小知识点9.杂记一KNN算法原理K近邻分类
- 基于分组 NMS 的检测模型后处理改进
Lunar*
目标检测算法与优化目标检测深度学习python
引言在目标检测任务中,后处理阶段的非极大值抑制(Non-MaximumSuppression,NMS)是至关重要的一环,主要用于去除高度重叠的冗余预测框。然而,在某些场景中,不同类别的目标可能会被网络同时预测为多个相近的类别,例如:交通工具检测场景:同一辆车可能被误检测为“自行车”和“电动车”。动物检测场景:同一只动物可能被误检测为“狼”和“狗”。家电检测场景:同一台设备可能被误检测为“微波炉”和
- 3.13 YOLO V3
不要不开心了
机器学习pytorch深度学习
今天的内容为YOLO-V3YOLO系列-YOLO-V3,最大的改进就是网络结构,使其更适合小目标检测。-特征做得更细致,融入多持续特征图信息来预测不同规格物体。-先验框更丰富了,3种scale,每种3个规格,一共9种。-softmax改进,预测多标签任务。-多scale-为了能检测到不同大小的物体,设计了3个scale。-scale变换经典方法-左图:图像金字塔;右图:单一的输入。-scale变换
- 基于YOLOv5的车牌识别系统:从数据集到UI界面的实现
深度学习&目标检测实战项目
YOLOv5实战项目YOLOui分类数据挖掘目标跟踪
1.引言随着智能交通系统的发展,车牌识别技术已成为交通管理、停车场自动化、路面监控等应用中的关键技术之一。车牌识别系统(LicensePlateRecognition,LPR)主要用于识别车辆的车牌号码,并将其转化为可以进一步处理的数据。车牌识别系统通常由图像处理、字符识别、目标检测等多种技术组成。近年来,随着深度学习技术的飞速发展,基于卷积神经网络(CNN)的目标检测算法,如YOLO(YouOn
- 点云从入门到精通技术详解100篇-基于激光雷达点云的三维目标检测
格图素书
目标检测人工智能计算机视觉
目录前言图像目标检测算法研究现状点云目标检测算法研究现状基于投影图的方法基于体素的方法基于点云的多模态融合方法2地面点云滤波及神经网络2.1目标检测数据集及采集设备2.1.1KITTI数据集2.1.2车载激光雷达2.2地面点云滤波算法2.2.1RANSAC算法2.2.2CSF算法本文篇幅较长,分为上下两篇,下篇详见基于激光雷达点云的三维目标检测(续)前言近几年来,在计算机视觉领域,利用深度学习卷积
- 【YOLOv11[基础]】目标检测OD | 导出ONNX模型 | ONN模型推理以及检测结果可视化 | python
Jackilina_Stone
【改进】YOLO系列人工智能python计算机视觉YOLO深度学习目标检测
本文将导出YOLO11.pt模型对应的ONNX模型,并且使用ONNX模型推理以及结果的可视化。话不多说,先看看效果图吧!!!目录一导出ONNX模型二推理及检测结果可视化1代码2效果图
- YOLO系列模型从v1到v10的演进
剑走偏锋o.O
YOLO目标跟踪人工智能
文章目录引言YOLOv1:开创单阶段目标检测先河发布时间与背景核心创新模型架构训练策略与优化YOLOv2:提升精度与速度的平衡发布时间与背景核心创新模型架构训练策略与优化YOLOv3:多尺度检测与残差连接发布时间与背景核心创新模型架构训练策略与优化YOLOv4:引入注意力机制与优化模块发布时间与背景核心创新模型架构训练策略与优化YOLOv5:工程优化与实际应用的结合发布时间与背景核心创新模型架构训
- 图像识别技术与应用课后总结(18)
一元钱面包
人工智能
·YOLO-V3RetinaNet系列,YOLO-V3在不同变体(如YOLOV3-320、YOLOV3-416等)下,在推理时间和精度上有不同的表现,展示了其在速度和准确性上的平衡。YOLO-V3的改进点网络结构:相比之前版本,YOLO-V3的网络结构进行了优化,使其更适合小目标检测。特征处理:对特征的处理更加细致,通过融入多持续特征图信息来预测不同规格的物体。先验框:先验框更加丰富,有3种sca
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {