jmeter分析性能报告时的误区

概述

我们用jmeter做性能测试,必然需要学会分析测试报告。但是初学者常常因为对概念的不清晰,最后被测试报告带到沟里去。

 

常见的误区

  • 分析响应时间全用平均值
  • 响应时间不和吞吐量挂钩
  • 响应时间和吞吐量不和成功率挂钩

。。。。。

 

平均值特别不靠谱

平均值为什么不靠谱?相信大家读新闻的时候经常可以看到,平均工资平均房价平均支出,等等字眼,你就知道为什么平均值不靠谱了。

(这些都是数学游戏)

性能测试也一样,平均数也是不靠谱,推荐一篇详细的文章《Why Averages Suck and Percentiles are Great》

我们做性能测试时,得到的结果数据不会总是一样的,而是波动的。

如果算平均值就会出现这样的情况:测试了10次,有9次是1ms,而有1次是10s,那么平均数据就是1s。

很明显,这完全不能反应性能测试的实际情况,因为那个10s的请求就是一个不正常的值。

另外,中位数(Median)可能会比平均数要稍微靠谱一些,中位数的意就是把将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 ,这意味着有50%的数据低于或高于这个中位数。

最为正确的统计做法是用百分比分布统计。TP50的意思是50%的响应时间都小于某个值,TP90表示90%的响应时间小于某个值。

jmeter分析性能报告时的误区_第1张图片

我们有一组数据:[ 10ms,  1s, 200ms, 100ms],我们把其从小到大排个序:[10ms, 100ms, 200ms, 1s]。

于是我们知道,TP50,就是50%的请求ceil(4*0.5)=2时间是小于100ms的,TP90就是90%的请求ceil(4*0.9)=4时间小于1s。

于是:TP50就是100ms,TP90就是1s

因此,通常严格一点的响应时间要求是这样的:99%的请求必须小于XXms

 

响应时间务必和吞吐量(Thoughput)挂钩

系统的性能如果只看吞吐量,不看响应时间是没有意义的。

我的系统tps可以达到10000,但是响应时间已经到了20秒钟,这样的系统已经不可用了,吞吐量也是没有意义的。

当负载上升的时候,系统会逐渐变的不稳定,响应时间也会变得越来越慢,波动越来越大,而吞吐率却开始下降,包括CPU的使用率情况也会如此。

所以,当系统变得不稳定的时候,吞吐量已经没有意义了。

jmeter分析性能报告时的误区_第2张图片

 

所以,吞吐量的值必需配合响应时间来看。例如:TP99小于100ms的时候,系统可以承载的最大并发数是1000

 

响应时间吞吐量和成功率要挂钩

应该不难理解,如果请求都是错误的,还做什么性能测试。

比如,我说我的系统并发可以达到10万,但是失败率是50%,那么这10万的并发完全就是一个笑话。

性能测试的失败率的容忍是非常低的。对于一些关键系统,成功率必须在100%

 

转载于:https://www.cnblogs.com/Zfc-Cjk/p/11152360.html

你可能感兴趣的:(jmeter分析性能报告时的误区)