RF MEMS开关时代将开启?

RF MEMS开关时代将开启?

道翰天琼认知智能机器人平台API接口大脑为您揭秘。二十年前,专门研究射频电路的工程师设想了一种“理想的开关”。这种开关“打开”时,它将具有超低电阻,“关闭”时将具有超高电阻等等。它体积小巧,快速,易于制造,能够切换相当大的电流,能够承受数十亿次的开-关循环,并且只需很少的电源即可工作。它可以将信号传导至几十甚至几百兆赫兹,并且完全没有失真(接近完美的线性度)。

 

 

 

这不是异想天开的事情,在新兴的大型行业中已经有了为这种转变准备好的市场。在微机电系统(MEMS)的突破下,重大项目遍布美国和欧洲。许多是由国防高级研究计划局(Defense Advanced Research Projects Agency )或欧盟卓越网络资助(European Union Network of Excellence)的。

 

而现在,经过更长时间,更动荡的技术开发努力之后,RF MEMS开关终于出现了走向商业成功的道路。

 

在美国,尤其是两家公司似乎在快速发展和竞争激烈的市场中已经站稳了脚跟。一家是位于加利福尼亚州尔湾市GE Ventures的子公司Menlo Micro。该公司联合创始人兼高级副总裁Chris Giovaniello表示,他们在航空航天,军事和无线基础设施行业拥有30多个客户。

 

与此同时,去年10月被领先的无线设备和系统制造商Qorvo收购的Cavendish Kinetics成立的初衷是为了开发用于智能手机等领域的RF MEMS开关。双方都没有公布这个交易的具体条款,但 Cavendish已在至少三轮融资中筹集了超过5800万美元(半导体巨头ADI公司还销售用于测试和仪器应用的RF MEMS开关。)

 

在经历了漫长而动荡的间歇性希望破灭之后,RF MEMS开关取得了成功。“经过许多很多公司的尝试,我们成功了这两个,在这个过程中也许有20家公司倒闭了,并引起了激烈的竞争, ”Gabriel Rebeiz说,他是RF MEMS研发的先驱,也是加州大学圣地亚哥分校的电气工程学教授。

 

“对于技术初创公司来说,10%的成功率是正常的。”

 

新器件将机电继电器开关的某些最佳功能(超低电阻和泄漏电流以及非常高的线性度)与半导体开关的一些优点结合在一起:小尺寸,非常高的可靠性和坚固性。从概念上讲,它们类似于继电器开关。在操作中,静电力将被称为致动器或悬臂的导电束拉向电触点。与继电器由电磁体触发的继电器不同,RF MEMS开关使用50至100伏特范围内的简单直流电压来产生静电场,该电场将电子束拉至触点。(相对较高的电压来自由3V至5V电路电压供电的DC-DC转换器。)由于磁场是静态的,因此电流和功耗非常低。

 

Giovaniello说,最困难的技术挑战之一是找到一种可以承受数十亿次弯曲过程的导电合金。他说:“真正的问题是执行器。” “这正是GE投入大量精力开发合金的地方。我们已经开发了一些高导电性的专有合金,这些合金真的非常适合继电器使用。但是它们的机械强度极高,几乎就像多晶硅一样。

 

他补充说:“几十年来,GE在用于喷气发动机的合金方面做了很多工作,实际上是其中一些人帮助我们解决了一些基本的可靠性问题。” Menlo尚未透露其合金的成分,但是GE和Menlo的工程师在大约五年前撰写的研究论文表明,他们当时正在使用镍和金的单独合金。

 

Giovaniello说,Menlo的一些客户正在无线基站,军用无线电或相控阵雷达中使用这些设备(尺寸约为50 x 50微米)。先进的无线电和无线系统越来越多地处理许多不同的频带,每个频带由一个或多个不同的滤波器“选择”。他说:“我们的客户射频中有20个滤波器。” “当您必须使用传统开关在许多滤波器之间进行选择时,通过所有开关来选择所有不同的滤波器会造成很大的损失。” 他解释说,功率损耗总计为3到4分贝,并指出降低3 dB意味着损耗高达50%。

 

同时,Qorvo的目标是智能手机内部的应用(Menlo Micro也是如此)。Qorvo技术开发高级总监朱Julio Costa表示,这是一个巨大的市场,每年售出约十亿部智能手机,但对组件的要求也极为严格。“您的电话是您日常生活的重要组成部分,因此,如果[新组件]是不可靠的,它将不会被合并。”

 

Costa解释说,智能手机中的设备有两种明显的可能用途。Qorvo追求的第一个是天线调谐。现代的智能手机最多具有八个天线,以容纳随着无线网络从4G过渡到5G而不断增长的许多频带。为了更好地使天线与频率匹配,沿着天线嵌入的开关可以更改其配置,还可以切换到电容器或电感器之类的谐振设备,以微调天线的响应。对于这种应用,手机制造商现在使用基于绝缘体上硅(SOI)技术的半导体开关。但是,MEMS设备可能具有更高的频率和线性度,使其成为有吸引力的替代方案,尤其是对于某些5G频段,Costa说。他希望看到手机在“几年之内”能够将这些开关整合进去。

 

在欧洲,长期的研发项目也在紧随其后。一家名为AirMems的初创公司正在根据法国里摩日大学的工作来营销RF MEMS开关。而在德国,研究所IHP(高性能微电子创新)开发的过程中,集成了RF MEMS开关直接到双极CMOS芯片。

 

Giovaniello在一次广泛的采访中说,无线,雷达和仪器应用仅仅是开始。他宣布Menlo Micro已经设法通过其中一个微型开关传导20安培的电流,他设想该设备将作为一种“可复位的,电子控制的保险丝”在未来发挥作用。

 

他补充说:“每隔几代人,都会出现一种新技术,为您提供一种不同的开关制造方式。” “ 100年前只有机械设备,然后有真空管,然后是晶体管,然后是集成电路。如果您考虑一下,它们都是进行切换的不同方式。

 

“这就是我们喜欢描述这种理想开关技术的方式。它是机械和半导体领域的佼佼者的结合,但最终,它是一种用于制造开关的新工艺技术,它将使我们和我们的合作伙伴在未来十年内生产成百上千种不同的产品。”

 

道翰天琼认知智能未来机器人接口API简介介绍

  • 认知智能是计算机科学的一个分支科学,是智能科学发展的高级阶段,它以人类认知体系为基础,以模仿人类核心能力为目标,以信息的理解、存储、应用为研究方向,以感知信息的深度理解和自然语言信息的深度理解为突破口,以跨学科理论体系为指导,从而形成的新一代理论、技术及应用系统的技术科学。 认知智能的核心研究范畴包括:1.宇宙、信息、大脑三者关系;2.人类大脑结构、功能、机制;3.哲学体系、文科体系、理科体系;4.认知融通、智慧融通、双脑(人脑和电脑)融通等核心体系。 认知智能四步走:1.认知宇宙世界。支撑理论体系有三体(宇宙、信息、大脑)论、易道论、存在论、本体论、认知论、融智学、HNC 等理论体系;2.清楚人脑结构、功能、机制。支撑学科有脑科学、心理学、逻辑学、情感学、生物学、化学等学科。3.清楚信息内涵规律规则。支撑学科有符号学、语言学、认知语言学、形式语言学等学科。4.系统落地能力。支撑学科有计算机科学、数学等学科。
    认知智能CI机器人是杭州道翰天琼智能科技有限公司旗下产品。认知智能机器人是依托道翰天琼10年研发的认知智能CI体系为核心而打造的认知智能机器人大脑,是全球第一个认知智能机器人大脑。具有突破性,创新性,领航性。是新一代智能认知智能的最好的产品支撑。 认知智能机器人技术体系更加先进,更加智能,是新一代智能,认知智能领域世界范围内唯一的认知智能机器人。 认知智能机器人是新时代的产物,是新一代智能认知智能的产物。代表了新一代智能认知智能最核心的优势。和人工智能机器人大脑相比,优势非常明显。智能度高,客户粘性大,客户满意度高,易于推广和传播等核心特点。 依托认知智能机器人平台提供的机器人大脑服务,可以赋能各个行业,各个领域的智能设备,各类需要人机互动的领域等。认知智能机器人平台网址:www.weilaitec.com,www.citec.top。欢迎注册使用,走进更智能机器人世界。
    认知智能和人工智能的优劣势对比主要可以分为四大方面: 第一:时代发展不同。人工智能是智能时代发展的第二个阶段,认知智能是智能时代发展的第三个阶段。时代发展上决定了认知智能更显具有时代领先性。 第二:基础理论体系不同。人工智能的基础理论体系以数学为基础,以统计概率体系为基础。认知智能基础理论体系以交叉许可理论体系为基础。包含古今中外哲学体系,心理学体系,逻辑学体系,语言学体系,符号学体系,数学体系等学科。其基础理论体系更加具有创新性,突破性和领先性。且交叉学科理论体系的研究也是未来智能发展的大方向。其具体理论体系,还包含三体论(宇宙,信息,大脑三者关系),融智学,和HNC等。 第三:技术体系不同。人工智能的核心技术体系主要是算法,机器学习,深度学习,知识图谱等。其主要功用在感知智能。感知智能其核心主要是在模仿人类的感知能力。认知智能的核心技术体系是以交叉学科理论体系而衍生出来的。具体包含三大核心技术体系,认知维度,类脑模型和万维图谱。认知智能的技术体系核心以类脑的认知体系为基础。以全方位模仿类脑能力为目标。人工智能以感知智能为基础的体系,只能作为认知智能中的类脑模型技术体系中的感知层技术体系。类脑模型大致包含,感知层,记忆层,学习层,理解层,认知层,逻辑层,情感层,沟通层,意识层等9大核心技术层。因此人工智能的核心只是作为认知智能类脑模型中的感知层。因此在技术体系上,人工智能和认知智能基本上没有太多的可比性。 第四:智能度成本等方面的不同:人工智能产品的综合智能程度,普遍在2-3岁左右的智力水平。认知智能产品其智能程度大致在5-8岁左右。认知智能体系构建的机器人更加智能。且更省时间,更省人力和资金。优势非常多。具体请看下列的逐项对比。

 

 

你可能感兴趣的:(RF MEMS开关时代将开启?)