玩转Netty – 从Netty3升级到Netty4

        这篇文章主要和大家分享一下,在我们基础软件升级过程中遇到的经典Netty问题。当然,官方资料也许是一个更好的补充。另外,大家如果对Netty及其Grizzly架构以及源码有疑问的,欢迎交流。后续会为大家奉献我们基于Grizzly和Netty构建的RPC框架的压测分析,希望大家能够喜欢!

  好了,言归正传~

依赖

  Netty团队大概从3.3.0开始,将依赖坐标从

    
      org.jboss.netty
      netty
      3.2.10.Final
    
  改成了(Netty作者离开了Jboss公司)
    
       io.netty
       netty
       3.3.0.Final
    

  这样,将其替换为Netty4,只需要替换一下版本就ok了,如替换成最新稳定版本:
     
         io.netty
         netty-all
         4.0.23.Final
     
  但请注意,从4开始,Netty团队做了模块依赖的优化,像Grizzly一样,分离出很多功能独立的Package。比方说,你希望使用Netty的buffer组件,只需简单依赖这个包就好了。不过本着严谨的态度,我们还是来看下netty-all这个一揽子包里究竟都有哪些依赖,如:

 

        
                ${project.groupId}
                netty-buffer
                ${project.version}
                compile
                true
          
          
                ${project.groupId}
                netty-codec
                ${project.version}
                compile
                true
           
           
                ${project.groupId}
                netty-codec-http
                ${project.version}
                compile
                true
            
            
                ${project.groupId}
                netty-codec-socks
                ${project.version}
                compile
                true
            
            
                ${project.groupId}
                netty-common
                ${project.version}
                compile
                true
            
            
                ${project.groupId}
                netty-handler
                ${project.version}
                compile
                true
            
            
                ${project.groupId}
                netty-transport
                ${project.version}
                compile
                true
            
            
                ${project.groupId}
                netty-transport-rxtx
                ${project.version}
                compile
                true
            
            
                ${project.groupId}
                netty-transport-sctp
                ${project.version}
                compile
                true
            
            
                ${project.groupId}
                netty-transport-udt
                ${project.version}
                compile
                true
            

     每个包都代表什么呢?描述如下:

玩转Netty – 从Netty3升级到Netty4_第1张图片

 

     通过依赖分析,最终我选择了精简依赖,如下:

   
        
            io.netty
            netty-handler
            4.0.23.Final
        
    

       为什么?因为 netty-handler依赖了 netty-codec, netty-transport, netty-buffer等,所以我的依赖最终可以瘦身到只依赖这个包。顺便说一下,在版本4中,针对Linux平台做了AIO的优化实现,如:
    
 
        ${project.groupId}
        netty-transport-native-epoll
        ${project.version}
        ${os.detected.classifier}
        compile
        true
    

       更多的细节,可以参看这里。


       Notice:Netty3和Netty4是可以共存的,其根本原因在于Netty团队为3和4分别设计了不同的基础package名(org.jboss.netty与io.netty)。就像我的工程,服务发现依赖了Curator,而它依赖了ZK,依赖了Netty3,而我的RPC部分仅仅依赖Netty4。


线程模型

  Netty3只保证 upstream事件在IO线程里执行,但是所有的downstream事件会被调用线程处理,它可能是IO线程,也可能是用户自定义线程,这就带来了一个问题,用户需要小心地处理同步操作。除此之外,还会面临线程上下文切换的风险,设想一下,你在write的时候遇到了异常,转而触发exceptionCaught,但这是一个upstream事件,怎么办?

  Netty4的线程模型则不存在此类问题,因为所有的操作都被保证在同一个EventLoop里的同一个Thread完成。也就是说Netty4不存在并发访问 ChannelHandler,当然这个前提是你没有给该handler打上Sharable注解。同时它也能保证 happens-before关系,所以你也没必要在 ChannelHandler声明volatile field。


  用户可以指定自己的 EventExecutor来执行特定的 handler。通常情况下,这种EventExecutor是单线程的,当然,如果你指定了多线程的 EventExecutor或者 EventLoop,线程sticky特性会保证,除非出现 deregistration,否则其中的一个线程将一直占用。如果两个handler分别注册了不同的EventExecutor,这时就要注意线程安全问题了。


  Netty4的线程模型还是有很多可以优化的地方,比方说目前Eventloop对channel的处理不均等问题,而这些问题都会在Netty 5里面优化掉,感兴趣的朋友可以参看官方Issues

  

Channel状态模型

   先来看两幅图,第一幅图是Netty3的Channel状态模型,第二附图是Netty4优化过的模型。可以看到,channelOpen,channelBound,和channelConnected 已经被channelActive替代。channelDisconnected,channelUnbound和channelClosed 也被 channelInactive替代。


玩转Netty – 从Netty3升级到Netty4_第2张图片


Netty 3


Netty 4


  这里就产生了两个问题:


       其一,channelRegistered and channelUnregistered 不等价于 channelOpen and channelClosed,它是Netty4新引入的状态为了实现Channel的dynamic registration, deregistration, and re-registration。


       第二, 既然是合并,那原先针对channelOpen的方法如何迁移?简单来做,可以直接迁移到替代方法里面。


Handler

1. ChannelPipelineFactory ---->  ChannelInitializer

      这里需要注意的是,ChannelPipeline的创建方式发生了变化,原先是这么玩的,
ChannelPipeline cp = Channels.pipeline();

      现在得这么玩
ChannelPipeline cp = ch.pipeline();

     用Netty团队的话来说就是:

“Please note that you don't create a new ChannelPipeline by yourself. After observing many use cases reported so far, the Netty project team concluded that it has no benefit for a user to create his or her own pipeline implementation or to extend the default implementation. Therefore, ChannelPipeline is not created by a user anymore. ChannelPipeline is automatically created by a Channel.”
 
  2. SimpleChannelHandler ----> ChannelDuplexHandler
     之前是这么玩的
 public void handleUpstream(ChannelHandlerContext ctx, ChannelEvent e)
            throws Exception
    {
        if (e instanceof ChannelStateEvent) {
            ChannelStateEvent cse = (ChannelStateEvent) e;
            switch (cse.getState()) {
                case OPEN:
                    if (Boolean.TRUE.equals(cse.getValue())) {
                        // connect
                        channelCount.incrementAndGet();
                        allChannels.add(e.getChannel());
                    }
                    else {
                        // disconnect
                        channelCount.decrementAndGet();
                        allChannels.remove(e.getChannel());
                    }
                    break;
                case BOUND:
                    break;
            }
        }


        if (e instanceof UpstreamMessageEvent) {
            UpstreamMessageEvent ume = (UpstreamMessageEvent) e;
            if (ume.getMessage() instanceof ChannelBuffer) {
                ChannelBuffer cb = (ChannelBuffer) ume.getMessage();
                int readableBytes = cb.readableBytes();
                //  compute stats here, bytes read from remote
                bytesRead.getAndAdd(readableBytes);
            }
        }
        ctx.sendUpstream(e);
    }


    public void handleDownstream(ChannelHandlerContext ctx, ChannelEvent e)
            throws Exception
    {
        if (e instanceof DownstreamMessageEvent) {
            DownstreamMessageEvent dme = (DownstreamMessageEvent) e;
            if (dme.getMessage() instanceof ChannelBuffer) {
                ChannelBuffer cb = (ChannelBuffer) dme.getMessage();
                int readableBytes = cb.readableBytes();
                // compute stats here, bytes written to remote
                bytesWritten.getAndAdd(readableBytes);
            }
        }
        ctx.sendDownstream(e);
    }


       改成ChannelDuplexHandler之后,我只需要重写read和write方法,来完成同样的功能。

其它


1. 通过下面的代码来完成Channel的限流

       ctx.channel().setReadable(false);//Before
       ctx.channel().config().setAutoRead(false);//After
 2.  TCP参数优化
 
      // Before:
      cfg.setOption("tcpNoDelay", true);
   cfg.setOption("tcpNoDelay", 0);  // Runtime ClassCastException
   cfg.setOption("tcpNoDelays", true); // Typo in the option name - ignored silently

   // After:
   cfg.setOption(ChannelOption.TCP_NODELAY, true);
   cfg.setOption(ChannelOption.TCP_NODELAY, 0); // Compile error
3. 单元测试经常用到的CodecEmbedder类已经变名为EmbeddedChannel

        @Test
      public void testMultipleLinesStrippedDelimiters() {
          EmbeddedChannel ch = new EmbeddedChannel(new DelimiterBasedFrameDecoder(8192, true,
                Delimiters.lineDelimiter()));
          ch.writeInbound(Unpooled.copiedBuffer("TestLine\r\ng\r\n", Charset.defaultCharset()));
          assertEquals("TestLine", releaseLater((ByteBuf) ch.readInbound()).toString(Charset.defaultCharset()));
          assertEquals("g", releaseLater((ByteBuf) ch.readInbound()).toString(Charset.defaultCharset()));
          assertNull(ch.readInbound());
          ch.finish();
      }
4. 简化的关闭操作,以前我是这么玩stop的
 if (serverChannel != null) {
            log.info("stopping transport {}:{}",getName(), port);
            // first stop accepting
            final CountDownLatch latch = new CountDownLatch(1);
            serverChannel.close().addListener(new ChannelFutureListener() {
                @Override
                public void operationComplete(ChannelFuture future) throws Exception {
                    // stop and process remaining in-flight invocations
                    if (def.getExecutor() instanceof ExecutorService) {
                        ExecutorService exe = (ExecutorService) getExecutor();
                        ShutdownUtil.shutdownExecutor(exe, "dispatcher");
                    }
                    latch.countDown();
                }
            });
            latch.await();
            serverChannel = null;
        }

        // If the channelFactory was created by us, we should also clean it up. If the
        // channelFactory was passed in by Bootstrap, then it may be shared so don't clean  it up.
        if (channelFactory != null) {
            ShutdownUtil.shutdownChannelFactory(channelFactory, bossExecutor, ioWorkerExecutor,allChannels);
            }
}

      现在我得这么玩

 public void stop() throws InterruptedException {
        // Shut down all event loops to terminate all threads.
        bossGroup.shutdownGracefully();
        workerGroup.shutdownGracefully();


        // Wait until all threads are terminated.
        bossGroup.terminationFuture().sync();
        workerGroup.terminationFuture().sync();
    }


5. 编解码命名改变

FrameDecoder ----> ByteToMessageDecoder
OneToOneEncoder  ----> MessageToMessageEncoder 
OneToOneDecoder ----> MessageToMessageDecoder

6. 心跳逻辑优化,之前我是这么玩的
 cp.addLast("idleTimeoutHandler", new IdleStateHandler(getTimer(),
                                                                          getClientIdleTimeout().toMillis(),
                                                                          NO_WRITER_IDLE_TIMEOUT,
                                                                          NO_ALL_IDLE_TIMEOUT,
                                                                          TimeUnit.MILLISECONDS));
  cp.addLast("heartbeatHandler", new HeartbeatHandler());

      其中HeartbeatHandler 继承了IdleStateAwareChannelHandler。在Netty4里,IdleStateAwareChannelHandler已经去除,但 IdleStateHandler类还存在,所以我会这么玩
   cp.addLast("idleTimeoutHandler", new IdleStateHandler(
                                NO_WRITER_IDLE_TIMEOUT, NO_WRITER_IDLE_TIMEOUT,
                                NO_ALL_IDLE_TIMEOUT, TimeUnit.MILLISECONDS));

  cp.addLast("heartbeatHandler", new HeartbeatHandler());

       其中,HeartbeatHandler 继承了ChannelInboundHandlerAdapter。具体的实现逻辑这里就不贴出来了。再啰嗦几句,很多同学喜欢自己启线程去做心跳逻辑,我是不推荐这种方式的。利用Netty的链路空闲检测机制可以很好的完成这个功能,能更好地配合Netty线程模型和异常捕获机制。自己定制,处理不好,会带来很大的线上隐患。


小结

       这篇文章简单记录了升级过程中遇到的一些比较higher的话题,配上代码,希望能更好的重现整个升级思路和过程,也希望能给大家带来帮助。如果你在升级过程中遇到了问题,欢迎留言交流。最后,祝玩的开心~

参考文档

1. http://www.infoq.com/news/2013/11/netty4-twitter
2. http://netty.io/wiki/all-documents.html
3. http://netty.io/wiki/index.html

你可能感兴趣的:(架构之魂,分布式应用,爪哇之美,编程之美)