- 蓝桥杯Python组最后几天冲刺———吐血总结,练题总结,很管用我学会了
晚风时亦鹿
学习笔记Python算法笔记python
一、重要知识要点1、穷举法2、枚举法3、动态规划4、回溯法5、图论6、深度优先搜索(DFS)7、广度优先搜索(BFS)8、二叉树9、递归10、分治法、矩阵法11、排列组合12、素数、质数、水仙花数13、欧几里得定理gcd14、求最大公约数、最小公倍数15、海伦公式(求三角形面积)16、博弈论17、贪心18、二分查找法19、hash表20、日期计算21、矩形快速幂22、树形DP23、最短路径24、最
- Python 最最最使用的动态规划入门教程 + 10道经典例题
我是阿核
Python动态规划算法pythonleetcode
不多废话,直接开讲动态规划三大步骤动态规划是一种将问题分解为若干个子问题,并存储这些子问题的解(通常使用数组或矩阵等数据结构),以便在后续计算中重复使用,从而避免了重复计算,提高了算法的效率。需要注意的是,动态规划并非一种特定的算法,而是一种解决问题的思想和方法。在实际应用中,需要根据具体问题的特点来设计合适的动态规划算法。动态规划的根本在于用已知项的求出未知项,并再次调用已经求出的未知项来解决更
- 动态规划,蒙特卡洛,TD,Qlearing,Sars,DQN,REINFORCE算法对比
青椒大仙KI11
动态规划算法机器学习深度学习
动态规划(DynamicProgramming,DP)通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划的步骤识别子问题:定义问题的递归解法,识别状态和选择。确定DP数组:确定存储子问题解的数据结构,通常是数组或矩阵。确定状态转移方程:找出状态之间的关系,即状态转移方程。边界条件:确定DP数组的初始值或边界条件。填表:按照顺序填入DP表,通常是从最小的子问题开始。构造最优解:根据
- C++爬楼梯——dfs、递归、动态规划、递推
*TQK*
编程语言知识点算法练习数据结构c++算法
什么是动态规划:给定一个问题,我们把他拆成一个个子问题,直到子问题可以直接解决。然后把子问题的答案保存起来,以减少重复计算。再根据子问题的答案反推,得出原问题解的一种方法递归的过程:"递"的过程是分解子问题的过程;(dfs是第归的一种)“归”的过程是产生答案的过程。“递”的过程是自顶向下。“归”的过程是自底向上,“底”代表的是已知最小子问题的答案递归适用于以下情况:1.问题具有递归结构:问题可以自
- 【贪心算法】洛谷P4995 - 跳跳
仟濹
算法学习笔记贪心算法算法
2025-01-21-第44篇【洛谷】贪心算法题单-【贪心算法】-【学习笔记】作者(Author):郑龙浩/仟濹(CSND账号名)目录文章目录目录洛谷P4995跳跳!题目描述输入格式输出格式样例#1样例输入#1样例输出#1样例#2样例输入#2样例输出#2提示样例解释数据范围思路代码洛谷P4995跳跳!题目描述你是一只小跳蛙,你特别擅长在各种地方跳来跳去。这一天,你和朋友小F一起出去玩耍的时候,遇到
- 头歌实训作业 算法设计与分析-贪心算法(第2关:最优装载问题)
Milk夜雨
头歌实训作业贪心算法算法
任务描述有一批集装箱要装上一艘载重量为C的轮船,共有n个集装箱,其中集装箱i的重量为Wi。最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。测试说明输入和输出说明:第1行为集装箱数目n和载重限制C第2行~第n+1行为n个集装箱的重量输出最优装载方案的集装箱数目,若没有装入任何集装箱,则输出0输入示例1:51052643输出示例1:3说明:其中一个最优装载方案为装入重量为2
- 数据结构与算法再探(五)贪心-双指针-滑动窗口
刀客123
数据结构与算法算法
贪心算法贪心算法是一种常用的算法设计策略,旨在通过局部最优选择来构建全局最优解。它的基本思想是:在每一步选择中,都选择当前看起来最优的选项,而不考虑后续的影响。贪心算法通常用于解决最优化问题,尤其是在某些特定条件下能够得到全局最优解的问题1、分发饼干455.分发饼干-力扣(LeetCode)假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子i,都有一个
- 农夫过河——python贪心算法实现
贝桑不止学Python
1.问题描述:一个农夫在河的西岸带了一匹狼、一只羊和一棵白菜,他需要把这三样东西用船带到河的东岸。然而,这艘船只能容下农夫本人和另外一样东西。如果农夫不在场的话,狼会吃掉羊,羊也会吃掉白菜。2.问题分析:由于整个过程涉及四个对象,多个步骤,而各个步骤中各个对象所处位置相对不同,因此可以定义一个二维数组,分别存储对象及初始状态——initial_state[0][0],[1][0],[1][1],[
- [前端算法]动态规划
摇光93
算法算法动态规划
最优子结构,重叠子问题爬楼梯递归+记忆化搜索自顶向下varclimbStairs=function(n){letmap=[]functiondfs(n){if(n=coins[j]){dp[i]=Math.min(dp[i],dp[i-coins[j]]+1);}}}if(dp[amount]===Infinity){return-1;}returndp[amount];}01背包问题functi
- 《贪心算法:原理剖析与典型例题精解》
m0_dawn
算法贪心算法算法蓝桥杯python职场和发展
必刷的贪心算法典型例题!算法竞赛(蓝桥杯)贪心算法1——数塔问题-CSDN博客算法竞赛(蓝桥杯)贪心算法2——需要安排几位师傅加工零件-CSDN博客算法(蓝桥杯)贪心算法3——二维数组排序与贪心算法——活动选择-CSDN博客算法(蓝桥杯)贪心算法4——拦截导弹的系统数量求解-CSDN博客算法(蓝桥杯)贪心算法5——删数问题的解题思路-CSDN博客算法(蓝桥杯)贪心算法6——均分纸牌问题的解题思路与
- 贪心与动规(动态规划)
programming expert
动态规划算法
1.贪心与动规的区别贪心算法和动态规划的主要区别在于它们解决问题的方式、能否保证得到最优解以及算法复杂度。解决问题的方式:贪心算法:在每一步选择中都采取当前状态下最优的选择,从而希望导致结果是全局最优的。它通常不考虑未来后果,只关注当前的最优解。动态规划:将原问题分解为子问题,通过解决子问题,并将子问题的解存储下来(通常是存储在一个表格中),在解决原问题时利用这些子问题的解。它通常以自底向
- 贪心算法:求过河的最短时间
2301_81758904
算法
描述:N位旅行者在夜里过桥需要借助手电筒。但N个人中只有一个手电筒,而且桥同时只能让两个人过。每个人单独过桥所需时间已知,但如果两个人同时过桥则所需时间是走得慢的那个人单独过桥所需的时间。要求:设计一个方案,让这N个人尽快过桥,计算这N个人的最短过桥时间。此如:有甲乙丙丁四个人,他们过河所需的时间分别是1,2,5,10。让最快的2个人先过桥,然后让跑的最快的人回去接剩下的人。例如:先让甲乙过去(2
- 程序设计思考:归零思想
hookby
程序设计
“归零思想”是一种在程序设计中常用的思考方法,主要指的是通过将某些值或状态归零,来简化问题或解决复杂度。这个思想在许多领域中都可以找到应用,尤其是在处理问题时需要清理和重置状态,避免累积错误或多余的计算。下面是几个典型的应用场景:1.状态重置在某些算法中,特别是动态规划、回溯、递归等问题中,我们可能需要在每个阶段重置某些变量或状态,防止它们影响后续的计算。例如,在递归算法中,递归结束后可以通过将某
- 为什么算法很难掌握
浅墨cgz
算法
算法之所以难以掌握,主要是因为以下几个原因:1.抽象性算法是对问题的抽象解决方案,通常不依赖于具体的编程语言或实现细节。初学者可能难以将抽象的逻辑转化为具体的代码。例如,动态规划(DP)的核心思想是将问题分解为子问题并存储中间结果,但这种抽象思维需要大量练习才能掌握。2.数学基础要求许多算法依赖于数学知识,例如:时间复杂度分析:需要理解大O表示法、递归关系等。图论算法:需要了解图的基本概念(如节点
- 代码随想录训练营第三十八天| 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结篇
chengooooooo
算法
322.零钱兑换题目链接:322.零钱兑换-力扣(LeetCode)讲解链接:代码随想录和昨天做过的零钱对换不太一样昨天的零钱兑换是完全背包里的球排列问题这个是求在指定的背包容量内求最小的组合数动态规划五部曲1定义dp方程我们假设用了dp[j]个硬币去凑j容量的背包要求dp[j]最小2推导递推公式首先最少用j-coins[i]个硬币来凑dp[j-coins[i]]容量的金额(背包)(不加上他本身的
- 动态规划的小总结(一)
抽奖开出西瓜
动态规划动态规划算法
前言这篇文章展示了规范化的动态规划做题步骤。部分内容借鉴了代码随想录代码随想录-动态规划509.斐波那契数题目描述和思路力扣题目链接(opensnewwindow)斐波那契数,通常用F(n)表示,形成的序列称为斐波那契数列。该数列由0和1开始,后面的每一项数字都是前面两项数字的和。也就是:F(0)=0,F(1)=1F(n)=F(n-1)+F(n-2),其中n>1给你n,请计算F(n)。典型的动态规
- Leetcode416. 分割等和子集
会流泪de鱼
Leetcode算法数据结构动态规划
Leetcode416.分割等和子集题目:给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。示例1:输入:nums=[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11]。示例2:输入:nums=[1,2,3,5]输出:false解释:数组不能分割成两个元素和相等的子集。题解:动态规划:数组长度ntarget\tex
- 蓝桥杯备赛笔记(九)动态规划(一)
小魏´•ﻌ•`
蓝桥杯C++蓝桥杯笔记动态规划
1.动态规划基础(1)线性DP1)什么是DP(动态规划)DP(动态规划)全称DynamicProgramming,是运筹学的一个分支,是一种将复杂问题分解成很多重叠的子问题,并通过子问题的解得到整个问题的解的算法。在动态规划中有一些概念:状态:就是形如dp[i][j]=val的取值,其中i,j为下标,也是用于描述、确定状态所需的变量,val为状态值。状态转移:状态与状态之间的转移关系,一般可以表示
- leetcode 115. 不同的子序列
fks143
leetcodeleetcode
题目:115.不同的子序列-力扣(LeetCode)动态规划问题,f[i][j]表示s的第i个元素匹配到t的第j个元素,有多少种结果f[i][j]=f[i-1][j]+(s[i]==t[j]?f[i-1][j-1]:0)答案就是f[s.length()-1][t.length()-1]#define_MAX_(1000000007)classSolution{public:intnumDistin
- 【c++】【算法】【动态规划】最长公共子序列
钟离墨笺
算法算法c++动态规划
【c++】【算法】【动态规划】最长公共子序列//递归方式//最长公共子序//直接递归求最长公共子序长度intFindValue(conststring&X,conststring&Y,inti,intj){if(i==0||j==0)return0;if(X[i]==Y[j])returnFindValue(X,Y,i-1,j-1)+1;elsereturnstd::max(FindValue(X
- leetcode-买卖股票问题
Only you680
leetcodeleetcode算法
309.买卖股票的最佳时机含冷冻期-力扣(LeetCode)动态规划解题思路:1、暴力递归(难点如何定义递归函数)2、记忆化搜索-傻缓存法(根据暴力递归可变参数确定缓存数组维度)3、严格表结构依赖的动态规划4、进一步优化(斜率优化、空间优化),非必须一、分析:假设[0,index-1]之前的最大利润已经知道,现在计算到了index位置的最大利润。根据题意,到index位置后可能有三种状态,买入、卖
- 最长回文字串的多种解法(java)
心 -
java
文章目录1.暴力解法2.中心扩散法3.动态规划法题目要求:给你一个字符串s,找到s中最长的回文子串1.暴力解法列举所有子串;将字符串分解为字符数组char[]arr,方便后续判断是否为回文字符串,接着使用两层for循环去跑字符串s,使用maxf初始化为1去记录最长回文字符串的长度,min记录最长字符串的起始下标。代码如下:publicStringlongestPalindrome(Strings)
- 动态规划算法----回文串问题
阿_北
算法动态规划c++
引言在算法的世界里,回文串问题一直是一个经典且富有挑战性的题目。而动态规划作为一种强大的算法思想,为解决这类问题提供了高效且优雅的解决方案。本文将深入探讨如何运用动态规划算法来解决回文串相关问题,从问题描述、动态规划思路,到代码实现与复杂度分析,全面剖析这一过程。回文串问题描述回文串是指一个字符串从左到右读和从右到左读是完全一样的,例如“level”、“madam”等。常见的回文串问题有:给定一个
- 算法第十六期——动态规划(DP)之线性DP
小叶pyか
算法动态规划
【概述】线性动态规划,是较常见的一类动态规划问题,其是在线性结构上进行状态转移,这类问题不像背包问题、区间DP等有固定的模板。线性动态规划的目标函数为特定变量的线性函数,约束是这些变量的线性不等式或等式,目的是求目标函数的最大值或最小值。因此,除了少量问题(如:LIS、LCS、LCIS等)有固定的模板外,大部分都要根据实际问题来推导得出答案。【例题】最长公共子序列(LCS)lanqiao0J题号1
- 后端架构师技术图谱
dreamcasher
架构师后端
《后端架构师技术图谱》(转)数据结构队列集合链表、数组字典、关联数组栈树二叉树完全二叉树平衡二叉树二叉查找树(BST)红黑树B-,B+,B*树LSM树BitSet常用算法排序、查找算法选择排序冒泡排序插入排序快速排序归并排序希尔排序堆排序计数排序桶排序基数排序二分查找Java中的排序工具布隆过滤器字符串比较KMP算法深度优先、广度优先贪心算法回溯算法剪枝算法动态规划朴素贝叶斯推荐算法最小生成树算法
- 2022.1.10 学习总结
山城有羽
算法c#
今天解出两道洛谷上面的搜索题,分别是“kkksc03考前临时抱佛脚”与“填涂颜色-洛谷”题目:kkksc03考前临时抱佛脚由题目意思可知,该题是要求我们将同一科目的所有“完成习题册”的时间尽可能均衡地分配给左右脑(双核就是强),然后选取各个科目的耗时较多的部分,相加就是正确答案。说起来很简单,就像一道简单的贪心类水题,但实际上需要用到动态规划,主要是解法类似于动态规划里的经典例题“01背包”。(而
- 华为OD机试 - 区间交叠问题 - 贪心算法(Python/JS/C/C++ 2024 E卷 200分)
哪 吒
华为od贪心算法python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述给定坐标轴上的一组线段,线段的起点和终点均
- 华为OD机试 - 删除重复数字后的最大数字 - 贪心算法(Python/JS/C/C++ 2024 E卷 200分)
哪 吒
华为od贪心算法python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述给定一个由纯数字组成以字符串表示的数值,现
- 华为OD机试 - 获取最多食物 - 拓扑排序、动态规划(Python/JS/C/C++ 2024 E卷 200分)
哪 吒
华为od动态规划python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述主办方设计了一个获取食物的游戏。游戏的地图
- 华为OD机试 - 五子棋迷 - 贪心算法(Python/JS/C/C++ 2024 E卷 100分)
哪 吒
华为od贪心算法python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述张兵和王武是五子棋迷,工作之余经常切磋棋艺
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f