MS-DOS 等操作系统在单一的 CPU 模式下运行,但是一些类 Unix 的操作系统则使用了双模式,可以有效地实现时间共享。在 Linux 机器上,CPU 要么处于受信任的内核模式,要么处于受限制的用户模式。除了内核本身处于内核模式以外,所有的用户进程都运行在用户模式之中。
内核模式的代码可以无限制地访问所有处理器指令集以及全部内存和 I/O 空间。如果用户
模式的进程要享有此特权,它必须通过系统调用向设备驱动程序或其他内核模式的代码发出请求。另外,用户模式的代码允许发生缺页,而内核模式的代码则不允许。在 2.4 和更早的内核中,仅仅用户模式的进程可以被上下文切换出局,由其他进程抢占。除非发生以下两种情况,否则内核模式代码可以一直独占 CPU:
2.6 内核引入了内核抢占,大多数内核模式的代码也可以被抢占。
在 Linux 内核环境下,申请大块内存的成功率随着系统运行时间的增加而减少,虽然可以通过vmalloc 系列调用申请物理不连续但虚拟地址连续的内存,但毕竟其使用效率不高且在 32 位系统上 vmalloc 的内存地址空间有限。所以,一般的建议是在系统启动阶段申请大块内存,但是其成功的概率也只是比较高而已,而不是 100%。如果程序真的比较在意这个申请的成功与否,只能退用“启动内存”(Boot Memory)。下面就是申请并导出启动内存的一段示例代码:
void* x_bootmem = NULL;
EXPORT_SYMBOL(x_bootmem);
unsigned long x_bootmem_size = 0;
EXPORT_SYMBOL(x_bootmem_size);
static int __init x_bootmem_setup(char *str)
{
x_bootmem_size = memparse(str, &str);
x_bootmem = alloc_bootmem(x_bootmem_size);
printk(“Reserved %lu bytes from %p for x\n”, x_bootmem_size, x_bootmem);
return 1;
}
__setup(“x-bootmem=”, x_bootmem_setup);
可见其应用还是比较简单的,不过利弊总是共生的,它不可避免也有其自身的限制:
在物理页面管理上实现了基于区的伙伴系统(zone based buddy system)。对不同区的内存使用单独的伙伴系统(buddy system)管理,而且独立地监控空闲页。相应接口alloc_pages(gfp_mask, order),_ _get_free_pages(gfp_mask, order)
等。
struct super_block,struct inode,struct file,struct dentry;
struct file_operations
执行文件,普通文件,目录文件,链接文件和设备文件,管道文件。
clone(),fork(),vfork();系统调用服务例程:sys_clone,sys_fork,sys_vfork;
1.系统调用 do_fork();
2.定时中断 do_timer();
3.唤醒进程 wake_up_process
4.改变进程的调度策略 setscheduler();
5.系统调用礼让 sys_sched_yield();
Liunx 调度程序是根据根据进程的动态优先级来调度进程的,但是动态优先级又是根据静态优先级根据算法计算出来的,两者是两个相关联的值。因为高优先级的进程总是比低优先级的进程先被调度,为防止多个高优先级的进程占用 CPU 资源,导致其他进程不能占有 CPU所以引用动态优先级概念。
struct runqueue
insmod 加载,rmmod 卸载
模块运行在内核空间,应用程序运行在用户空间
应用程序实现,Linux 中的浮点运算是利用数学库函数实现的,库函数能够被应用程序链接后调用,不能被内核链接调用。这些运算是在应用程序中运行的,然后再把结果反馈给系统。Linux 内核如果一定要进行浮点运算,需要在建立内核时选上 math-emu,使用软件模拟计算浮点运算,据说这样做的代价有两个:用户在安装驱动时需要重建内核,可能会影响到其他的应用程序,使得这些应用程序在做浮点运算的时候也使用 math-emu,大大的降低了效率。
模块程序运行在内核空间,不能链接库函数。
TLB,页表缓存,当线性地址被第一次转换成物理地址的时候,将线性地址和物理地址的对应放到 TLB 中,用于下次访问这个线性地址时,加快转换速度。
字符设备和块设备。网卡是例外,他不直接与设备文件对应,mknod 系统调用用来创建设备文件。
字符设备描述符 struct cdev,cdev_alloc()用于动态的分配 cdev 描述符,cdev_add()用于注册一个 cdev 描述符,cdev 包含一个 struct kobject 类型的数据结构它是核心的数据结构。
open(),read(),write(),llseek(),realse();
Linux 使用一个设备编号来唯一的标示一个设备,设备编号分为:主设备号和次设备号,一般主设备号标示设备对应的驱动程序,次设备号对应设备文件指向的设备,在内核中使用dev_t 来表示设备编号,一般它是 32 位长度,其中 12 位用于表示主设备号,20 位用于表示次设备号,利用 MKDEV(int major,int minor);用于生成一个 dev_t 类型的对象。
靠软件中断实现的,首先,用户程序为系统调用设置参数,其中一个编号是系统调用编号,参数设置完成后,程序执行系统调用指令,x86 上的软中断是有 int 产生的,这个指令会导致一个异常,产生一个事件,这个事件会导致处理器跳转到内核态并跳转到一个新的地址。并开始处理那里的异常处理程序,此时的异常处理就是系统调用程序。
Linux 中的软中断和工作队列是中断处理。