- deepseek:2025年Java面试必刷高频LeetCode题目
Alexon Xu
java面试leetcode
以下是2025年Java面试中高频LeetCode题目分类及对应链接,结合大厂实际考察频率整理:一、链表类反转链表(Easy)迭代法与递归实现双解,掌握三指针操作环形链表检测(Easy)快慢指针经典应用,延伸考察环入口点计算合并K个排序链表(Hard)优先队列解法时间复杂度O(NlogK)相交链表(Easy)双指针数学技巧:a+c+b=b+c+a删除链表的倒数第N个节点(Medium)快慢指针+虚
- 网安知识“大乱炖“
Lovely_18
网安知识积累
网安知识"大乱炖"Windows安全事件日志常用EventID:EventID含义说明4624登录成功表示用户成功登录系统4625登录失败✅表示登录尝试失败,是暴力破解最关键的日志标志4672特权登录表示具有管理员权限的账户登录(用于检测高权限账户活动)4648显式凭证登录用户在使用runas或远程方式提供用户名/密码登录暴力破解相关日志特征:连续触发大量4625登录失败来自同一个IP或多个IP的
- Flutter基础(UI监听)
aaiier
flutter前端
文本按钮(TextButton)文本按钮是没有边框的按钮,当点击时会有涟漪效果。TextButton(onPressed:(){//点击按钮后要执行的代码print('文本按钮被点击了');},child:Text('点击我'),)手势检测器(GestureDetector)GestureDetector能够检测多种手势,不只是点击,还包括滑动、长按等。GestureDetector(onTap:
- 基于级联深度学习算法在双参数MRI中检测前列腺病变的评估| 文献速递-AI辅助的放射影像疾病诊断
有Li
人工智能深度学习算法
Title题目EvaluationofaCascadedDeepLearning–basedAlgorithmforProstateLesionDetectionatBiparametricMRI基于级联深度学习算法在双参数MRI中检测前列腺病变的评估Background背景MultiparametricMRI(mpMRI)improvesprostatecancer(PCa)detectionc
- Istio 深度解析与实战:从原理到应用的全面指南
阿贾克斯的黎明
javaistio网络云原生
目录Istio深度解析与实战:从原理到应用的全面指南一、Istio原理深度剖析1.数据平面2.控制平面二、Istio的安装与部署1.环境准备2.安装Istio3.注入Sidecar三、Istio实战应用场景1.流量管理(1)简单路由(2)流量镜像2.安全防护(1)服务间双向认证(2)基于角色的访问控制(RBAC)3.监控与可观测性(1)启用Prometheus和Grafana(2)查看监控指标四、
- WPF中获取主窗体
周杰伦fans
ai学习参考WPF笔记学习C#的笔记wpf
在WPF的MVVM模式中,通常不直接引用主窗体(MainWindow),而是通过依赖注入、事件聚合器或命令参数传递等方式实现逻辑解耦。以下是几种推荐方法:方法1:依赖注入(推荐)在ViewModel中定义一个接口,通过构造函数注入主窗体服务。步骤:定义接口(可选):publicinterfaceIMainWindowService{voidShowMessage(stringmessage);}在
- mot数据集_MOT数据集转化成VOC格式脚本(mot2voc)
飞啦不休
mot数据集
使用mmdetection检测框架进行相关的训练,由于MOT的数据集标注格式和检测常用的VOC以及COCO格式有很大的差距,因此用于检测任务的时候,需要将mot格式的数据集转化成VOC格式用于检测任务的训练,评估。HUST小菜鸡:将MOT17-Det数据集转成VOC格式zhuanlan.zhihu.com之前我写过一篇将MOT17转化成VOC格式的文章,但是该方法是一个分布的步骤,而且在实际操作过
- linux查看内存泄露工具,linux 内存泄露检测工具
陈濯濯
linux查看内存泄露工具
ValgrindMemcheck一个强大开源的程序检测工具安装cdvalgrind./autogen.sh./configuremakemakeinstall使用1、编译你的程序debug版本./TestMem2、执行:valgrind--tool=memcheck--leak-check=full--log-file=./log.txt./TestMemmtraceGNU扩展,用来跟踪mallo
- ServiceImpl注入多个baseMapper实例报错
缘来是庄
java
1、项目启动报错FieldbaseMapperincom.baomidou.mybatisplus.extension.service.impl.ServiceImplrequiredasinglebean,but2werefound:-xxxMapper:definedinfile[D:\xxxMapper.class]-xxxxMapper:definedinfile[D:\xxxxMappe
- SBC编解码器库:蓝牙音频传输的核心
草莓味儿柠檬
本文还有配套的精品资源,点击获取简介:SBC编解码器库是一个软件工具集,提供在蓝牙技术中核心使用的音频编解码功能。该库以C语言实现,包含编码、解码以及相关设置控制功能,使得开发者可以在应用中集成SBC编解码能力,如蓝牙音频播放器或耳机。SBC编解码工作原理基于子带编码理论,通过量化和编码音频信号的各个子带,实现高效的数据传输。SBC支持多种比特率、采样率和声道配置,并包含错误检测与恢复机制,控制接
- 《网络安全自学教程》- SQL注入漏洞详解
士别三日wyx
《网络安全自学教程》sql数据库网络安全安全web安全
《网络安全自学教程》SQL注入的原理其实很简单:由于后端过滤不严格,把用户输入的数据当成SQL语句执行了。SQL注入1、SQL注入常出现在哪些功能?2、SQL注入危害3、SQL注入分类4、判断是否存在SQL注入5、SQL注入方式6、SQL注入防御6.1、预编译1、SQL注入常出现在哪些功能?凡是涉及「数据库操作的功能」,都有可能存在SQL注入,比如:搜索框等查询功能。用户注册/用户登录功能。密码找
- 【原创】【4】【辅助工具】基于视觉模型+FFmpeg+MoviePy实现短视频自动化二次编辑+多赛道
三块钱0794
ffmpeg音视频自动化
主要功能目录选择-浏览选择包含视频的目录智能扫描-自动递归扫描所有视频文件️赛道管理-从文件夹名自动获取赛道或手动指定实时进度-显示扫描和导入的实时进度双数据库-支持SQLite(推荐)和MySQL重复检测-自动跳过已存在的视频文件使用场景示例假设您的视频目录结构是:D:\短视频\├──外国人系列\│├──1.mp4│├──2.mp4│└──3.mov├──美食系列\│├──美食1.mp4│└──
- 番外篇 | SEAM-YOLO:引入SEAM系列注意力机制,提升遮挡小目标的检测性能
小哥谈
YOLOv8:从入门到实战YOLO深度学习人工智能机器学习计算机视觉神经网络
前言:Hello大家好,我是小哥谈。SEAM(Squeeze-and-ExcitationAttentionModule)系列注意力机制是一种高效的特征增强方法,特别适合处理遮挡和小目标检测问题。该机制通过建模通道间关系来自适应地重新校准通道特征响应。在遮挡小目标检测中的应用优势包括:1)通道注意力增强:SEAM通过全局平均池化捕获通道级全局信息,帮助网络在遮挡情况下仍能关注关键特征。2)多尺度特
- MySQL与SQL Server的差异及测试手法
ke0hly
web安全安全网络安全
SQL注入漏洞分析:MySQL与SQLServer的差异及测试手法引言如果系统使用的是SQLServer数据库,则可以实现写入Webshell,而MySQL则不行。本文将深入探讨这两种数据库在SQL注入场景下的差异,以及SQLServer如何利用SQL注入写入Webshell,并介绍其他常见的SQL注入攻击手法。MySQL与SQLServer在SQL注入写入Webshell上的差异SQL注入的本质
- 什么是IDS IPS以及IDS,IPS的区别
ke0hly
应急响应网络系统安全安全
目录IDS入侵检测系统定义工作原理主要功能主要类型:主动被动局限性:IPS入侵检测系统定义为什么会有IPS?功能主要类型主动被动IDS,IPS区别,选择IDS入侵检测系统定义入侵检测即通过从网络系统中的若干关键节点收集并分析信息,监控网络中是否有违反安全策略的行为或者是否存在入侵行为。入侵检测系统通常包含3个必要的功能组件:信息来源、分析引擎和响应组件。工作原理信息收集:信息收集包括收集系统,网络
- 目标追踪数据标注
sethrsinine
目标跟踪
在将YOLO(目标检测)和DeepSORT(目标追踪)结合时,数据标注需要同时满足检测和追踪的需求。以下是具体的分阶段标注策略和操作指南:一、标注的核心要求检测标注:每帧中目标的边界框(BoundingBox)和类别标签(如行人、车辆)。追踪标注:跨帧的目标ID(TrackID),确保同一目标在不同帧中ID一致。二、分阶段标注流程阶段1:视频预处理•目标:将视频转换为可标注的帧序列。•操作:使用F
- AI生成代码安全审计:从AST逆向到对抗样本生成
梦玄海
人工智能安全
引言随着Codex、Copilot等AI代码生成工具的普及,开发效率显著提升的同时,也引入了新型安全风险:模型生成的代码可能隐含漏洞(如SQL注入、XSS)、逻辑错误,或被恶意样本“投毒”。传统的静态扫描工具(如SonarQube)难以覆盖AI模型的上下文语义逻辑,亟需结合程序分析与AI对抗技术进行深度审计。本文将从AST逆向工程切入,深入探讨如何通过对抗样本检测AI生成代码的脆弱性。一、核心挑战
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- 【目标检测】YOLOv13:超图增强的实时目标检测新标杆,值得收藏。
Carl_奕然
机器视觉与目标检测目标检测YOLO人工智能
一文掌握YOLOv13最新特性1、引言2、Yolov13详细讲解2.1发布时间与背景2.2相对于YOLOv12的核心提升2.2.1精度显著提升2.2.2轻量化与效率优化2.2.3高阶语义建模能力2.3架构设计与核心创新2.3.1超图自适应关联增强(HyperACE)2.3.2全流程聚合-分发(FullPAD)2.3.3轻量化模块设计2.4性能对比2.4代码示例2.4.1环境配置2.4.2训练代码2
- 线程状态,优先级,守护线程基础详解
黑白极客
javajava多线程并发编程队列后端
线程状态,优先级,守护线程基础详解线程状态停止线程线程休眠线程礼让线程强制执行线程状态检测线程的优先级守护线程线程同步线程状态创建状态(new之后就是创建状态就绪状态(调用start方法之后调用状态(cpu调度之后阻塞状态(当调用sleep,wait,或同步锁时,线程进入阻塞状态,就是代码不往下执行。阻塞状态接触后,重新进入就绪状态,等待cpu的调度。)死亡状态(线程中断或者结束,一旦进入死亡状态
- 基于PaddleOCR的表格识别系统开发
pk_xz123456
仿真模型深度学习算法深度学习开发语言分类安全cnn
基于PaddleOCR的表格识别系统开发1.项目概述本项目旨在使用PaddleOCR框架开发一个高性能的表格识别系统,能够准确识别约30种不同类型的表格结构。系统将处理2500张合成表格图像作为训练数据,并在合成测试集上进行评估。系统核心功能包括表格检测、表格结构识别和表格内容识别三部分。1.1项目背景表格是信息传递的重要载体,广泛存在于各类文档中。传统表格识别方法需要复杂的规则和模板,而基于深度
- RDK X5/X3 yolov5目标检测从环境搭建到设备集成
激萌の小宅
YOLOYOLO目标检测人工智能
1、RDKX5yolov5目标检测之训练环境搭建2、RDKX5yolov5目标检测之pt转onnx3、RDKX5yolov5目标检测之开发机环境部署4、RDKX5yolov5目标检测之onnx转bin5、RDKX5yolov5目标检测之开发板运行
- 口罩检测数据集-1591张图片疫情防控管理 智能门禁系统 公共场所安全监控
cver123
数据集目标跟踪人工智能计算机视觉目标检测pytorch
口罩检测数据集-1591张图片已发布目标检测数据集合集(持续更新)口罩检测数据集介绍数据集概览包含类别应用场景数据样本展示文件结构与使用建议使用建议技术标签YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参
- AIOps 简介与实践初探 - 智能指标异常检测
weixin_42587823
aiopsaiops
AIOps简介与实践初探-智能指标异常检测问题的根源:静态阈值的“告警疲劳”作为SRE,我们每天都在与告警作斗争。而绝大多数告警都来源于静态阈值的设定,例如:CPU使用率>80%磁盘空间500ms这种方式简单直接,但在复杂系统中,它的弊端也日益凸显:告警疲劳(AlertFatigue):为了“宁可错杀,不可放过”,阈值往往设得偏低。结果,在业务高峰期,系统正常地繁忙,告警却响个不停。久而久之,大家
- OpenCV 三维重建实战:从工业检测到自动驾驶,3 大场景代码全解析
从零开始学习人工智能
opencv自动驾驶数码相机
:工业零部件三维建模与检测案例背景:在汽车制造工厂,对于复杂形状的发动机零部件质量检测与逆向工程需求,需要高精度的三维模型。传统检测方法效率低且精度有限,而三维重建技术可快速获取零部件三维信息,实现高效检测与设计优化。技术实现:使用多个相机从不同角度拍摄零部件,利用calib3d模块进行相机标定,获取准确的相机内参和外参。通过特征点检测与匹配算法(如SIFT、ORB等)找到不同图像间的对应点,再用
- 弹幕系统开发实战:QT框架与VS2015源码解析
Paula-柒月拾
本文还有配套的精品资源,点击获取简介:本源码项目融合了三个关键技术领域:弹幕系统设计、Qt框架开发和VisualStudio2015集成。它详细阐述了弹幕系统的核心功能实现,包括弹幕数据结构、渲染、碰撞检测和用户交互。同时,本项目介绍了如何利用Qt5的信号与槽机制、GUI组件和绘图系统来开发弹幕效果,并展示了如何在VisualStudio2015中进行项目管理、编辑、调试和构建。此项目提供了全面的
- 基于YOLOv5的监控摄像头遮挡检测系统:从数据集到UI界面的完整实现
芯作者
D2:YOLOYOLO神经网络
实时守护监控设备安全,智能识别遮挡攻击的AI解决方案一、问题背景与系统价值在安防监控领域,摄像头遮挡是常见的恶意攻击手段——统计显示35%的安防失效源于摄像头被遮挡。传统方案依赖人工巡查,效率低下且响应延迟。本文将带你构建完整的AI遮挡检测系统,核心创新点:双模检测机制:YOLOv5目标检测+背景建模异常分析轻量化部署:模型量化压缩至1.8MB动态学习:运行时自动更新异常样本库二、系统架构设计[视
- HCCDA – AI华为云人工智能开发者认证-60道单选题题库及答案_华为人工智能入门级开发者认证题库
2401_89172925
人工智能华为云华为
单选题及答案AI模型的评测指标主要分为精度指标和性能指标,以下哪一项不属于常用的性能指标?A.FPS(FramesPerSecond)B.FLOPs(Floating-pointOperationsPerSecond)C.aPs(QueryPerSecond)D.F1值Mask_Detection技能模板提供了口罩检测技能,针对每个人,若没有检测到人脸,也没有检测到口罩,则会显示什么信息?A.No
- 三光吊舱激光测距模块技术解析!
云卓SKYDROID
无人机人工智能高科技云卓科技科普
一、激光测距模块运行方式1.脉冲式测距(直接ToF)原理:通过发射激光脉冲并计算其从发射到反射返回的时间差(Δt),利用公式距离=(光速×Δt)/2计算目标距离。适用场景:适用于远距离(如1~3km),但精度受大气衰减和噪声影响较大。典型参数:测程达3km,精度±2m(如SH150S1吊舱)。2.相位式测距(间接ToF)原理:对激光束进行幅度调制,通过检测发射波与反射波的相位差计算距离,精度可达毫
- Spring高级特性详解:解锁企业级开发的进阶能力
一切皆有迹可循
Java开发springjava后端
前言Spring框架不仅提供基础的依赖管理与事务控制,其高级特性更是为企业级应用开发注入强大动能。本文将深入解析Spring的核心高级特性,结合实战代码示例,助你掌握这些提升开发效率与系统性能的关键技术。一、条件化配置(@Conditional)1.1特性概述@Conditional注解允许开发者根据特定条件决定是否创建Bean,实现环境敏感型配置。Spring提供多个内置条件注解,如@Condi
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C