Elasticsearch+python学习

爬虫中建立moudle文件夹用于存放elasticsearch基本数据操作命令(建表)

from datetime import datetime
from elasticsearch_dsl import DocType, Date, Nested, Boolean,analyzer, InnerObjectWrapper, Completion, Keyword, Text, Integer
from elasticsearch_dsl.connections import connections

#创建服务器链接,非常终于
connections.create_connection(hosts=["localhost"])

#定义数据类,继承DocType,定义各个字段数据类型,在from elasticsearch_dsl import中导入需要的数据类型,包括字符串,整型,布尔等等
class LagouType(DocType):
    job_name = Text(analyzer="ik_max_word")
    company = Text(analyzer="ik_max_word")
    url = Keyword()
    job_id = Keyword()
    salary = Text(analyzer="ik_max_word")
    city = Keyword()
    experience = Text(analyzer="ik_max_word")
    education = Text(analyzer="ik_max_word")
    job_type = Keyword()
    label = Text(analyzer="ik_max_word")
    job_benefit = Text(analyzer="ik_max_word")
    job_description = Text(analyzer="ik_max_word")
    addr = Text(analyzer="ik_max_word")
    publish_time = Text(analyzer="ik_max_word")
    crawl_time = Date()


    #建立链接的index和doc,在类中建立类,必须是Meta类,用于传入index值和type(表)值
    class Meta:
        index = "lagou"
        doc_type = "job"

if __name__ == "__main__":
    #调用init()方法建立映射(mappings)
    LagouType.init()

在pipeline中定制与Elasticsearch连接

1.直接写在pipeline中,但是爬去的item不一定存入elasticsearch中或某数据库中,并且值内容不一,容易混乱,配置性低

#pipeline中写入
    class Elasticsearch_pipeline(object):
    def __init__(self):
        pass
    def process_item(self,item,spider):
        lagou = LagouType()
        lagou.job_name = item['job_name']
        lagou.company = item['company']
        lagou.url = item['url']
        lagou.job_id = item['job_id']
        lagou.salary = item['salary']
        lagou.city = item['city']
        lagou.experience = item['experience']
        lagou.education = item['education']
        lagou.job_type = item['job_type']
        lagou.label = item['label']
        lagou.job_benefit = item['job_benefit']
        lagou.job_description = item['job_description']
        lagou.addr = item['addr']
        lagou.publish_time = item['publish_time']
        lagou.crawl_time = item['crawl_time']
        lagou.save()

        return item

2.在item中定制save_to_elasticsearch接口,并在pipeline中调用item方法,增强item的可配置性

    #item方法
    def save_to_elasticsearch(self):
        # 继承类
        lagou = LagouType()
        lagou.job_name = self['job_name']
        lagou.company = self['company']
        lagou.url = self['url']
        lagou.job_id = self['job_id']
        lagou.salary = self['salary']
        lagou.city = self['city']
        lagou.experience = self['experience']
        lagou.education = self['education']
        lagou.job_type = self['job_type']
        lagou.label = self['label']
        lagou.job_benefit = self['job_benefit']
        lagou.job_description = self['job_description']
        lagou.addr = self['addr']
        lagou.publish_time = self['publish_time']
        lagou.crawl_time = self['crawl_time']
        lagou.save()

#pipeline调用
class Elasticsearch_pipeline(object):
    def __init__(self):
        pass

    #在process_item中调用item的方法(item.save_to_elasticsearch())
    def process_item(self,item,spider):
        item.save_to_elasticsearch()
        return item

#settings中开启item_pipeline

    ITEM_PIPELINES = {
    'lagou_spider.pipelines.Elasticsearch_pipeline': 1
    }

#settings中开启item_pipeline

    ITEM_PIPELINES = {
    'lagou_spider.pipelines.Elasticsearch_pipeline': 1
    }

记录Elasticsearch与Python的各种查询操作(基本与kibana中的elasticsearch操作相同可以照搬)

重点“ from elasticsearch import Elasticsearch”

Elasticsearch的查询API接口:

client = Elasticsearch()

response = client.search(select sentence……)

class Elasticsearch_Option:
    def __init__(self):
        pass

#注意点1:注意大小写,进行分词分析时,elasticsearch的分词器会把自动把所有词变成小写


#match 用法,对 match 传入的值进行分词,符合分词结果的都可以检索到
def match_option(self):
    client = Elasticsearch()
    response = client.search(
        index="lagou",
        body={
           "query": {
                "match": {
                    'title':'C++后端工程师'
                }
            }
        }
    )

#term 用法,不对 term  传入的值进行分词
def term_option(self):
    client = Elasticsearch()
    response = client.search(
        index="lagou",
        body={
           "query": {
                "term": {
                    'salary_min':'2000000'
                }
            }
        }
    )

#terms 用法,可传入列表,符合列表内的值都可以检索到
def terms_option(self):
    client = Elasticsearch()
    response = client.search(
        index="lagou",
        body={
            "query": {
                "terms": {
                    'title': ['python','java','c++']  #千万注意大小写
                }
            }
        }
    )

#from 和 size 的用法
def from_size_option(self):
    client = Elasticsearch()
    response = client.search(
        index="lagou",
        body={
           "query": {
                "match": {
                    'title':'工程师'
                }
            },
            "from":0,
            "size":4
        }
    )

#match_all操作
def match_all_option(self):
    client = Elasticsearch()
    response = client.search(
        index="lagou",
        body={
           "query": {
                "match_all": {
            }
           }
        }
    )

# match_phrase 短语查询
def match_phrase_option(self):
    client = Elasticsearch()
    response = client.search(
        index="lagou",
        body={
            "query": {
                "match_phrase": {
                    "title": 'python研发工程师'
                }
            }
        }
    )
    for i in response['hits']['hits']:
        print(i['_source'])


#multi_match查询,单一查询条件查询多列(fields)
def multi_match_option(self):
    client = Elasticsearch()
    response = client.search(
        index="lagou",
        body={
            "query": {
                "multi_match": {
                    "query":"深圳",
                    "fields": ['title','city']    #查询 fields 多个字段中,只要有:query查询内容的关键字的就查询出来。
                }
            }
        }
    )
    #仔细留意response返回结构
    for i in response['hits']['hits']:
        print(i['_source'])

#排序操作
def sort_option(self):
    client = Elasticsearch()
    response = client.search(
        index="lagou",
        body={
            "query": {
            "match_all":{}
            },
            "sort":{
                "comment":{         #sort下面先制定需要排序的栏
                    "order": "asc"
                }
            }
        }
    )
    # 仔细留意response返回结构
    for i in response['hits']['hits']:
        print(i['_source'])

#范围查询,gte:大于等于; gt:大于; lte:小于等于; lt:小于; boots:表示权重
def range_option(self):
    client = Elasticsearch()
    response = client.search(
        index="lagou",
        body={
            "query": {
                "range":{
                    "comment":{     #range下面是要确定范围的field
                        "gt": 15,
                        "lt": 20
                    }
                }
            }
        }
    )
    # 仔细留意response返回结构
    for i in response['hits']['hits']:
        print(i['_source'])

#wildcard,模糊查询
def wildcard_option(self):
    client = Elasticsearch()
    response = client.search(
        index="lagou",
        body={
            "query": {
                "wildcard":{
                    "title":{     #range下面是要确定范围的field
                    "value":"pyth*n"    # "*" 标识通配
                    }
                }
            }
        }
    )
    # 仔细留意response返回结构
    for i in response['hits']['hits']:
        print(i['_source'])


# bool查询
# filter:字段过滤并且不参与打分,过滤掉非数组内的内容
# must:满足数组中所有的条件,“与”
# should:数组中的查询条件满足一个或多个,“或”
# must_not:数组中的查询条件一个都不能去满足,“非”

def bool_option(self):
    client = Elasticsearch()
    response = client.search(
        index="lagou",
        body={
              "query": {
                "bool": {
                  "must": [{
                    "match_all":{}
                  }],
                  "filter": {
                    "term": {
                      "title": '工程师'
                    }
                  },
                  "must_not": [{
                    "match": {
                      "comment": 16
                    }
                  }],
                  "should": [{
                    "match": {
                      "title": 'c'
                    }
                  }]
                }
              }
            }
    )
    # 仔细留意response返回结构
    for i in response['hits']['hits']:
        print(i['_source'])

你可能感兴趣的:(elasticsearch)