Object Detection Summary

List of papers about Object Detection.

Object Detection

(box AP)

Detector Backbone VOC07 VOC12 COCO Speed Publish
R-CNN AlexNet 58.5 53.3 CVPR14-Rich feature hierarchies for accurate object detection and semantic segmentation
R-CNN VGG16 66 CVPR14
SPP-Net ZF-5 54.2 ECCV14-Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
DeepID-Net 64.1
NoC 73.3 68.8
DCN-BOSP 68.5 66.4 CVPR15-Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
DeepBox 37.8 ICCV15-DeepBox: Learning Objectness with Convolutional Networks
AttentionNet AttentionNet + Refine + R-CNN 69.8 72 ICCV15-AttentionNet: Aggregating Weak Directions for Accurate Object Detection
DeepProposal ICCV15-DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers
MR-CNN 78.2 73.9 ICCV15-Object detection via a multi-region & semantic segmentation-aware CNN model
Fast R-CNN VGG16 70 68.4 19.7 ICCV15
Faster R-CNN VGG16 73.2/78.8 70.4/75.9 21.9 198ms NeurIPS15-Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
YOLO VGG16? 66.4 57.9 CVPR16-You Only Look Once: Unified, Real-Time Object Detection
G-CNN VGG16 66.8 66.4 CVPR16-G-CNN: an Iterative Grid Based Object Detector
AZNet VGG16 70.4 22.3 CVPR16-Adaptive Object Detection Using Adjacency and Zoom Prediction
ION VGG16 80.1 77.9 33.1 CVPR16-Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks
CRAFT 75.7 71.3 CVPR16-CRAFT Objects from Images
HyperNet 76.3 71.4 CVPR16-HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection
OHEM 78.9 76.3 22.4 CVPR16-Training Region-based Object Detectors with Online Hard Example Mining
CRAPF CVPR16-CRAFT Objects from Images
MPN 33.2 BMVC16-A MultiPath Network for Object Detection
SSD 76.8 74.9 31.2 ECCV16-SSD: Single Shot MultiBox Detector
GBDNet 77.2 27 ECCV16-Crafting GBD-Net for Object Detection
CPF 76.4 72.6 ECCV16-Contextual Priming and Feedback for Faster R-CNN
MS-CNN ECCV16-A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
R-FCN ResNet101 79.5 77.6 29.9 NeurIPS16-R-FCN: Object Detection via Region-based Fully Convolutional Networks
PVANet9.0 84.9 84.2 NIPSW16-PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
DeepID-Net 69 PAMI16
NoC 71.6 68.8 27.2 TPAMI16-Object Detection Networks on Convolutional Feature Maps
DSSD 81.5 80.0 33.2 arxiv17 -DSSD : Deconvolutional Single Shot Detector
TDM 37.3 CVPR17-Beyond Skip Connections: Top-Down Modulation for Object Detection
FPN 36.2 CVPR17-Feature Pyramid Networks for Object Detection
YOLOv2 DarkNet-19 78.6 73.4 CVPR17-YOLO9000: Better, Faster, Stronger
RON 77.6 75.4 27.4 CVPR17-RON: Reverse Connection with Objectness Prior Networks for Object Detection
RSA ICCV17-Recurrent Scale Approximation for Object Detection in CNN
DeNet 77.1 73.9 33.8 ICCV17-DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling
CoupleNet 82.7 80.4 34.4 ICCV17-CoupleNet: Coupling Global Structure with Local Parts for Object Detection
RetinaNet ResNeXt101+FPN ? 39.1 ICCV17-Focal Loss for Dense Object Detection
Mask R-CNN ResNeXt101 39.8 ICCV17
Mask R-CNN ResNet101-FPN 38.2 ICCV17
DSOD 77.7 76.3 ICCV17 -DSOD: Learning Deeply Supervised Object Detectors from Scratch
SMN 70.0 ICCV17-Spatial Memory for Context Reasoning in Object Detection
DCN Aligned-Inception-ResNet 81.5 37.5 ICCV17-Deformable Convolutional Networks
Light-Head R-CNN Xception* 41.5? arxiv17-Light-Head R-CNN: In Defense of Two-Stage Object Detector
YOLOv3 DarkNet53 33 arxiv18 -YOLOv3: An Incremental Improvement
SIN VGG16? 76 73.1 23.2 CVPR18-Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships
STDN DenseNet-169 80.9 31.8 CVPR18-Scale-Transferrable Object Detection
RefineDet ResNet101 83.8 83.5 41.8 CVPR18-Single-Shot Refinement Neural Network for Object Detection
MegDet CVPR18-MegDet: A Large Mini-Batch Object Detector
DA Faster R-CNN CVPR18-Domain Adaptive Faster R-CNN for Object Detection in the Wild
SNIP 45.7 CVPR18-An Analysis of Scale Invariance in Object Detection – SNIP
Relation-Network 32.5 CVPR18-Relation Networks for Object Detection
Cascade R-CNN ResNet-101 42.8 CVPR18-Cascade R-CNN: Delving into High Quality Object Detection
MLKP 80.6 77.2 28.6 CVPR18-Multi-scale Location-aware Kernel Representation for Object Detection
Fitness-NMS 41.8 CVPR18-Improving Object Localization with Fitness NMS and Bounded IoU Loss
PANet ResNet50-FPN 41.2 CVPR18
PANet ResNeXt101 47.4 CVPR18
STDNet BMVC18-STDnet: A ConvNet for Small Target Detection
RFBNet 82.2 ECCV18-Receptive Field Block Net for Accurate and Fast Object Detection
CornerNet Hourglass104 42.1 ECCV18- CornerNet: Detecting Objects as Paired Keypoints
PFPNet 84.1 83.7 39.4 ECCV18-Parallel Feature Pyramid Network for Object Detection
Softer-NMS arxiv18-Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection
ShapeShifter ECML-PKDD’ 18-ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector
Pelee 70.9 NeurIPS18-Pelee: A Real-Time Object Detection System on Mobile Devices
HKRM 78.8 37.8 NeurIPS18-Hybrid Knowledge Routed Modules for Large-scale Object Detection
SNIPER NeurIPS18-SNIPER: Efficient Multi-Scale Training
FishNet 43.3 NeurIPS18
M2Det 44.2 AAAI19-M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network
R-DAD Res152 81.2 82 43.1 AAAI19-Object Detection based on Region Decomposition and Assembly
Feature Intertwiner 42.5/44.2 ICLR19-Feature Intertwiner for Object Detection
Locating Objects Without Bounding Boxes CVPR19
GIoU CVPR19
Cascade Mask R-CNN ResNeXt-101-FPN 46.6
HTC(Hybrid Task Cascade) ResNeXt-101-FPN 47.1 CVPR19
Guided Anchoring(GA-RPN) CVPR19
Libra R-CNN ResNeXt-101-FPN 43 CVPR19-Libra R-CNN: Balanced Learning for Object Detection
SNIPER 47.6 Arxiv19 May- SNIPER: Efficient Multi-Scale Training
Cascade RetinaNet ResNet101 41.1 BMVC19_Cascade RetinaNet: Maintaining Consistency for Single-Stage Object Detection
GFR 30 BMVC19_Improving Object Detection from Scratch via Gated Feature Reuse
TridentNet ResNet101-DCN 48.4 ICCV19-Scale-Aware Trident NetWorks for Object Detection
HTC+DCN (extra training) ResNeXt-101-FPN 50.7 CVPR19
NAS-FPN 48.3 CVPR19-Learning Scalable Feature Pyramid Architecture for Object Detection
CornerNet-Saccade+gt attention 50.3 Arxiv19. apr
Cascade R-CNN ResNeXt-152 50.9 Arxiv19. Jun
Learning Data Augmentation Strategies for Object Detection 50.7 Arxiv19. Jun
ThunderNet seNet535 28 ICCV19_ThunderNet:Towards Real-time Generic Object Detection
CARAFE MaskRCNN-Res50 38.8 ICCV19_CARAFE: Content-Aware ReAssembly of FEatures
LIP FRCN-res101 43.9 ICCV19_LIP: Local Importaance-based Pooling
FreeAnchor ResNeXt101 44.8 NeurIPS19_FreeAnchor: Learning to Match Anchors for Visual Object Detection
Cascade RPN 41.6 NeurIPS19
Efficient Neural Architecture Transformation Search in Channel-Level for Object Detection better NeurIPS19_
DetNAS better NeurIPS19_DetNAS: Backbone Search for Object Detection
CBNet Cascade Mask R-CNN + Dual-ResNeXt152 52.8 Arxiv19 - A Novel Composite Backbone Network Architecture for Object Detection
CBNet Cascade Mask R-CNN + Triple-ResNeXt152 53.3 Arxiv19 - A Novel Composite Backbone Network Architecture for Object Detection

(mask AP)

Detector Backbone VOC07 VOC12 COCO Speed Publish
Mask R-CNN ResNet-50-FPN 35.6 ICCV17
PANet ResNet-50-FPN 36.6
Cascade Mask R-CNN ResNeXt-101-FPN 40.1
HTC(Hybrid Task Cascade) ResNeXt-101-FPN 41.2 CVPR19
HTC(Hybrid Task Cascade) SENet-154 +ResNeXt-101 64x4d & 32x8d + DPN-107 + FishNet 49 CVPR19
MS R-CNN(Mask Scoring) ResNet-101 DCN+FPN 39.6(COCO2017) CVPR19

Anchor Free

Detector Backbone VOC07 VOC12 COCO Speed Publish
OverFeat ICLR14-OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
MultiBox CVPR14-Scalable Object Detection using Deep Neural Networks
DenseBox CVPR15
MultiGrasp ICRA15
UnitBox ACM_MM16
YOLOv1 VGG16? 66.4 57.9 CVPR16
YOLOv2 DarkNet-19 21.6 CVPR17
YOLOv3 DarkNet53 33 arxiv18
CornerNet Hourglass104 40.5/42.1 ECCV18
Learning Region Features for Object Detection ResNet101-FPN 39.9 ECCV18
Grid R-CNN ResNeXt-101 43.2 CVPR18
MetaAnchor ResNet101-FPN 83.3 37.9 NeurIPS18-MetaAnchor: Learning to Detect Objects with Customized Anchors
DeRPN AAAI19
GA-RPN ResNet-50-FPN 39.6 CVPR19
FSAF ResNeXt101 42.9/44.6 CVPR19
ExtremeNet Hourglass104 40.2/43.7 CVPR19-Bottom-up Object Detection by Grouping Extreme and Center Points
DuBox VGG-16 82.89 82.01 39.52 arxiv19.Apr
CenterNet- Keypoint Triplets for Object Detection Hourglass-104 44.9/47 arxiv19.Apr
FCOS ResNeXt-32x8d-101-FPN 42.1 ICCV19-arxiv19.Apr
FoveaBox ResNeXt-101 42.1 arxiv19.Apr
Objects as Points (CenterNet) Hourglass104 42.1/45.1 arxiv19.Apr
RPDet(RepPoints) ResNet-101-DCN 42.8 ICCV19
CornerNet-Lite Hourglass-54 43.2 arxiv19.Apr
LW-RetinaNet 35.4 arxiv19.May
Matrix Nets ResNeXt-101-X 47.8 arxiv19. Aug
FreeAnchor ResNeXt101 44.8 NeurIPS19_FreeAnchor: Learning to Match Anchors for Visual Object Detection

Dataset

Dataset Article Publish
KITTI Andreas Geiger and Philip Lenz and Raquel Urtasun CVPR12
PASCAL VOC The PASCAL Visual Object Classes (VOC) Challenge IJCV10
PASCAL VOC The PASCAL Visual Object Classes Challenge: A Retrospective IJCV15
ImageNet ImageNet: A Large-Scale Hierarchical Image Database CVPR09
ImageNet ImageNet Large Scale Visual Recognition Challenge IJCV15
COCO Microsoft COCO: Common Objects in Context ECCV14
Open Images The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale arXiv’ 18
Object365
LVIS LVIS: A Dataset for Large Vocabulary Instance Segmentation CVPR19

参考:

  1. https://github.com/hoya012/deep_learning_object_detection#2019
  2. https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
  3. https://github.com/caocuong0306/awesome-object-proposals
  4. https://blog.csdn.net/shuzfan/article/category/6429450
  5. CVer 大盘点| 性能最强的目标检测算法,2019.7.7

【2019.9.20 更新中。。。】

你可能感兴趣的:(Object,detection)