kafka

常用命令:

val rdd1 = sc.parallelize(List(('a',1),('a',2)))

val rdd = sc.textFile(“/usr/local/spark/tmp/char.data")

rdd.count

rdd.cache

val word_count = rdd.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)

word_count.saveAsTextFile("/usr/local/spark/tmp/result")

val word_count = rdd.flatMap(_.split(" ")).map((_,1)).groupByKey()

rdd1.lookup('a')

val rdd2 = sc.parallelize(List(1,2,3,4,5))
rdd2.reduce(_+_)

word_count.map(x => (x._2,x._1)).sortByKey(false).map(x => (x._1,x._2)).collcet

val rdd = sc.textFile(“/usr/local/spark/tmp/SogouQ1.txt")

rdd.map(_.split("\\t")(0)).filter(_< "20111230010101").count

//parallelize演示
val num=sc.parallelize(1 to 10)   //并行化
val doublenum = num.map(_*2)
val threenum = doublenum.filter(_ % 3 == 0)
threenum.collect
threenum.toDebugString

val num1=sc.parallelize(1 to 10,6)
val doublenum1 = num1.map(_*2)
val threenum1 = doublenum1.filter(_ % 3 == 0)
threenum1.collect
threenum1.toDebugString

threenum.cache()
val fournum = threenum.map(x=>x*x)
fournum.collect
fournum.toDebugString
threenum.unpersist()

num.reduce (_ + _)
num.take(5)
num.first
num.count
num.take(5).foreach(println)

//K-V演示
val kv1=sc.parallelize(List(("A",1),("B",2),("C",3),("A",4),("B",5)))
kv1.sortByKey().collect //注意sortByKey的小括号不能省
kv1.groupByKey().collect
kv1.reduceByKey(_+_).collect

val kv2=sc.parallelize(List(("A",4),("A",4),("C",3),("A",4),("B",5)))
kv2.distinct.collect
kv1.union(kv2).collect

val kv3=sc.parallelize(List(("A",10),("B",20),("D",30)))
kv1.join(kv3).collect
kv1.cogroup(kv3).collect

val kv4=sc.parallelize(List(List(1,2),List(3,4)))
kv4.flatMap(x=>x.map(_+1)).collect

//文件读取演示
val rdd1 = sc.textFile("hdfs://hadoop1:8000/dataguru/week2/directory/")
rdd1.toDebugString
val words=rdd1.flatMap(_.split(" "))
val wordscount=words.map(x=>(x,1)).reduceByKey(_+_)
wordscount.collect
wordscount.toDebugString

val rdd2 = sc.textFile("hdfs://hadoop1:8000/dataguru/week2/directory/*.txt")
rdd2.flatMap(_.split(" ")).map(x=>(x,1)).reduceByKey(_+_).collect

//gzip压缩的文件
val rdd3 = sc.textFile("hdfs://hadoop1:8000/dataguru/week2/test.txt.gz")
rdd3.flatMap(_.split(" ")).map(x=>(x,1)).reduceByKey(_+_).collect

//日志处理演示
//http://download.labs.sogou.com/dl/q.html 完整版(2GB):gz格式
//访问时间\t用户ID\t[查询词]\t该URL在返回结果中的排名\t用户点击的顺序号\t用户点击的URL
//SogouQ1.txt、SogouQ2.txt、SogouQ3.txt分别是用head -n 或者tail -n 从SogouQ数据日志文件中截取

//搜索结果排名第1,但是点击次序排在第2的数据有多少?
val rdd1 = sc.textFile("hdfs://hadoop1:8000/dataguru/data/SogouQ1.txt")
val rdd2=rdd1.map(_.split("\t")).filter(_.length==6) //非6列数据
rdd2.count()
val rdd3=rdd2.filter(_(3).toInt==1).filter(_(4).toInt==2)
rdd3.count()
rdd3.toDebugString

//session查询次数排行榜
val rdd4=rdd2.map(x=>(x(1),1)).reduceByKey(_+_).map(x=>(x._2,x._1)).sortByKey(false).map(x=>(x._2,x._1))  //(x._2,x._1)表示互换
rdd4.toDebugString
rdd4.saveAsTextFile("hdfs://hadoop1:8000/dataguru/week2/output1")


//cache()演示
//检查block命令:bin/hdfs fsck /dataguru/data/SogouQ3.txt -files -blocks -locations
val rdd5 = sc.textFile("hdfs://hadoop1:8000/dataguru/data/SogouQ3.txt")
rdd5.cache()
rdd5.count()
rdd5.count()  //比较时间


//join演示
val format = new java.text.SimpleDateFormat("yyyy-MM-dd")
case class Register (d: java.util.Date, uuid: String, cust_id: String, lat: Float,lng: Float)
case class Click (d: java.util.Date, uuid: String, landing_page: Int)
val reg = sc.textFile("hdfs://hadoop1:8000/dataguru/week2/join/reg.tsv").map(_.split("\t")).map(r => (r(1), Register(format.parse(r(0)), r(1), r(2), r(3).toFloat, r(4).toFloat)))
val clk = sc.textFile("hdfs://hadoop1:8000/dataguru/week2/join/clk.tsv").map(_.split("\t")).map(c => (c(1), Click(format.parse(c(0)), c(1), c(2).trim.toInt)))
reg.join(clk).take(2)

 

你可能感兴趣的:(kafka,java,大数据)