1 """ 2 csv.py - read/write/investigate CSV files 3 """ 4 5 import re 6 from _csv import Error, __version__, writer, reader, register_dialect, \ 7 unregister_dialect, get_dialect, list_dialects, \ 8 field_size_limit, \ 9 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \ 10 __doc__ 11 from _csv import Dialect as _Dialect 12 13 from collections import OrderedDict 14 from io import StringIO 15 16 __all__ = ["QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE", 17 "Error", "Dialect", "__doc__", "excel", "excel_tab", 18 "field_size_limit", "reader", "writer", 19 "register_dialect", "get_dialect", "list_dialects", "Sniffer", 20 "unregister_dialect", "__version__", "DictReader", "DictWriter", 21 "unix_dialect"] 22 23 class Dialect: 24 """Describe a CSV dialect. 25 26 This must be subclassed (see csv.excel). Valid attributes are: 27 delimiter, quotechar, escapechar, doublequote, skipinitialspace, 28 lineterminator, quoting. 29 30 """ 31 _name = "" 32 _valid = False 33 # placeholders 34 delimiter = None 35 quotechar = None 36 escapechar = None 37 doublequote = None 38 skipinitialspace = None 39 lineterminator = None 40 quoting = None 41 42 def __init__(self): 43 if self.__class__ != Dialect: 44 self._valid = True 45 self._validate() 46 47 def _validate(self): 48 try: 49 _Dialect(self) 50 except TypeError as e: 51 # We do this for compatibility with py2.3 52 raise Error(str(e)) 53 54 class excel(Dialect): 55 """Describe the usual properties of Excel-generated CSV files.""" 56 delimiter = ',' 57 quotechar = '"' 58 doublequote = True 59 skipinitialspace = False 60 lineterminator = '\r\n' 61 quoting = QUOTE_MINIMAL 62 register_dialect("excel", excel) 63 64 class excel_tab(excel): 65 """Describe the usual properties of Excel-generated TAB-delimited files.""" 66 delimiter = '\t' 67 register_dialect("excel-tab", excel_tab) 68 69 class unix_dialect(Dialect): 70 """Describe the usual properties of Unix-generated CSV files.""" 71 delimiter = ',' 72 quotechar = '"' 73 doublequote = True 74 skipinitialspace = False 75 lineterminator = '\n' 76 quoting = QUOTE_ALL 77 register_dialect("unix", unix_dialect) 78 79 80 class DictReader: 81 def __init__(self, f, fieldnames=None, restkey=None, restval=None, 82 dialect="excel", *args, **kwds): 83 self._fieldnames = fieldnames # list of keys for the dict 84 self.restkey = restkey # key to catch long rows 85 self.restval = restval # default value for short rows 86 self.reader = reader(f, dialect, *args, **kwds) 87 self.dialect = dialect 88 self.line_num = 0 89 90 def __iter__(self): 91 return self 92 93 @property 94 def fieldnames(self): 95 if self._fieldnames is None: 96 try: 97 self._fieldnames = next(self.reader) 98 except StopIteration: 99 pass 100 self.line_num = self.reader.line_num 101 return self._fieldnames 102 103 @fieldnames.setter 104 def fieldnames(self, value): 105 self._fieldnames = value 106 107 def __next__(self): 108 if self.line_num == 0: 109 # Used only for its side effect. 110 self.fieldnames 111 row = next(self.reader) 112 self.line_num = self.reader.line_num 113 114 # unlike the basic reader, we prefer not to return blanks, 115 # because we will typically wind up with a dict full of None 116 # values 117 while row == []: 118 row = next(self.reader) 119 d = OrderedDict(zip(self.fieldnames, row)) 120 lf = len(self.fieldnames) 121 lr = len(row) 122 if lf < lr: 123 d[self.restkey] = row[lf:] 124 elif lf > lr: 125 for key in self.fieldnames[lr:]: 126 d[key] = self.restval 127 return d 128 129 130 class DictWriter: 131 def __init__(self, f, fieldnames, restval="", extrasaction="raise", 132 dialect="excel", *args, **kwds): 133 self.fieldnames = fieldnames # list of keys for the dict 134 self.restval = restval # for writing short dicts 135 if extrasaction.lower() not in ("raise", "ignore"): 136 raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'" 137 % extrasaction) 138 self.extrasaction = extrasaction 139 self.writer = writer(f, dialect, *args, **kwds) 140 141 def writeheader(self): 142 header = dict(zip(self.fieldnames, self.fieldnames)) 143 self.writerow(header) 144 145 def _dict_to_list(self, rowdict): 146 if self.extrasaction == "raise": 147 wrong_fields = rowdict.keys() - self.fieldnames 148 if wrong_fields: 149 raise ValueError("dict contains fields not in fieldnames: " 150 + ", ".join([repr(x) for x in wrong_fields])) 151 return (rowdict.get(key, self.restval) for key in self.fieldnames) 152 153 def writerow(self, rowdict): 154 return self.writer.writerow(self._dict_to_list(rowdict)) 155 156 def writerows(self, rowdicts): 157 return self.writer.writerows(map(self._dict_to_list, rowdicts)) 158 159 # Guard Sniffer's type checking against builds that exclude complex() 160 try: 161 complex 162 except NameError: 163 complex = float 164 165 class Sniffer: 166 ''' 167 "Sniffs" the format of a CSV file (i.e. delimiter, quotechar) 168 Returns a Dialect object. 169 ''' 170 def __init__(self): 171 # in case there is more than one possible delimiter 172 self.preferred = [',', '\t', ';', ' ', ':'] 173 174 175 def sniff(self, sample, delimiters=None): 176 """ 177 Returns a dialect (or None) corresponding to the sample 178 """ 179 180 quotechar, doublequote, delimiter, skipinitialspace = \ 181 self._guess_quote_and_delimiter(sample, delimiters) 182 if not delimiter: 183 delimiter, skipinitialspace = self._guess_delimiter(sample, 184 delimiters) 185 186 if not delimiter: 187 raise Error("Could not determine delimiter") 188 189 class dialect(Dialect): 190 _name = "sniffed" 191 lineterminator = '\r\n' 192 quoting = QUOTE_MINIMAL 193 # escapechar = '' 194 195 dialect.doublequote = doublequote 196 dialect.delimiter = delimiter 197 # _csv.reader won't accept a quotechar of '' 198 dialect.quotechar = quotechar or '"' 199 dialect.skipinitialspace = skipinitialspace 200 201 return dialect 202 203 204 def _guess_quote_and_delimiter(self, data, delimiters): 205 """ 206 Looks for text enclosed between two identical quotes 207 (the probable quotechar) which are preceded and followed 208 by the same character (the probable delimiter). 209 For example: 210 ,'some text', 211 The quote with the most wins, same with the delimiter. 212 If there is no quotechar the delimiter can't be determined 213 this way. 214 """ 215 216 matches = [] 217 for restr in (r'(?P[^\w\n"\'])(?P ', # ,".*?", 218 r'(?:^|\n)(?P?)(?P ["\']).*?(?P=quote)(?P=delim)["\']).*?(?P=quote)(?P', # ".*?", 219 r'(?P[^\w\n"\'])(?P ?) >[^\w\n"\'])(?P ', # ,".*?" 220 r'(?:^|\n)(?P?)(?P ["\']).*?(?P=quote)(?:$|\n)["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space) 221 regexp = re.compile(restr, re.DOTALL | re.MULTILINE) 222 matches = regexp.findall(data) 223 if matches: 224 break 225 226 if not matches: 227 # (quotechar, doublequote, delimiter, skipinitialspace) 228 return ('', False, None, 0) 229 quotes = {} 230 delims = {} 231 spaces = 0 232 groupindex = regexp.groupindex 233 for m in matches: 234 n = groupindex['quote'] - 1 235 key = m[n] 236 if key: 237 quotes[key] = quotes.get(key, 0) + 1 238 try: 239 n = groupindex['delim'] - 1 240 key = m[n] 241 except KeyError: 242 continue 243 if key and (delimiters is None or key in delimiters): 244 delims[key] = delims.get(key, 0) + 1 245 try: 246 n = groupindex['space'] - 1 247 except KeyError: 248 continue 249 if m[n]: 250 spaces += 1 251 252 quotechar = max(quotes, key=quotes.get) 253 254 if delims: 255 delim = max(delims, key=delims.get) 256 skipinitialspace = delims[delim] == spaces 257 if delim == '\n': # most likely a file with a single column 258 delim = '' 259 else: 260 # there is *no* delimiter, it's a single column of quoted data 261 delim = '' 262 skipinitialspace = 0 263 264 # if we see an extra quote between delimiters, we've got a 265 # double quoted format 266 dq_regexp = re.compile( 267 r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \ 268 {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE) 269 270 271 272 if dq_regexp.search(data): 273 doublequote = True 274 else: 275 doublequote = False 276 277 return (quotechar, doublequote, delim, skipinitialspace) 278 279 280 def _guess_delimiter(self, data, delimiters): 281 """ 282 The delimiter /should/ occur the same number of times on 283 each row. However, due to malformed data, it may not. We don't want 284 an all or nothing approach, so we allow for small variations in this 285 number. 286 1) build a table of the frequency of each character on every line. 287 2) build a table of frequencies of this frequency (meta-frequency?), 288 e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows, 289 7 times in 2 rows' 290 3) use the mode of the meta-frequency to determine the /expected/ 291 frequency for that character 292 4) find out how often the character actually meets that goal 293 5) the character that best meets its goal is the delimiter 294 For performance reasons, the data is evaluated in chunks, so it can 295 try and evaluate the smallest portion of the data possible, evaluating 296 additional chunks as necessary. 297 """ 298 299 data = list(filter(None, data.split('\n'))) 300 301 ascii = [chr(c) for c in range(127)] # 7-bit ASCII 302 303 # build frequency tables 304 chunkLength = min(10, len(data)) 305 iteration = 0 306 charFrequency = {} 307 modes = {} 308 delims = {} 309 start, end = 0, min(chunkLength, len(data)) 310 while start < len(data): 311 iteration += 1 312 for line in data[start:end]: 313 for char in ascii: 314 metaFrequency = charFrequency.get(char, {}) 315 # must count even if frequency is 0 316 freq = line.count(char) 317 # value is the mode 318 metaFrequency[freq] = metaFrequency.get(freq, 0) + 1 319 charFrequency[char] = metaFrequency 320 321 for char in charFrequency.keys(): 322 items = list(charFrequency[char].items()) 323 if len(items) == 1 and items[0][0] == 0: 324 continue 325 # get the mode of the frequencies 326 if len(items) > 1: 327 modes[char] = max(items, key=lambda x: x[1]) 328 # adjust the mode - subtract the sum of all 329 # other frequencies 330 items.remove(modes[char]) 331 modes[char] = (modes[char][0], modes[char][1] 332 - sum(item[1] for item in items)) 333 else: 334 modes[char] = items[0] 335 336 # build a list of possible delimiters 337 modeList = modes.items() 338 total = float(chunkLength * iteration) 339 # (rows of consistent data) / (number of rows) = 100% 340 consistency = 1.0 341 # minimum consistency threshold 342 threshold = 0.9 343 while len(delims) == 0 and consistency >= threshold: 344 for k, v in modeList: 345 if v[0] > 0 and v[1] > 0: 346 if ((v[1]/total) >= consistency and 347 (delimiters is None or k in delimiters)): 348 delims[k] = v 349 consistency -= 0.01 350 351 if len(delims) == 1: 352 delim = list(delims.keys())[0] 353 skipinitialspace = (data[0].count(delim) == 354 data[0].count("%c " % delim)) 355 return (delim, skipinitialspace) 356 357 # analyze another chunkLength lines 358 start = end 359 end += chunkLength 360 361 if not delims: 362 return ('', 0) 363 364 # if there's more than one, fall back to a 'preferred' list 365 if len(delims) > 1: 366 for d in self.preferred: 367 if d in delims.keys(): 368 skipinitialspace = (data[0].count(d) == 369 data[0].count("%c " % d)) 370 return (d, skipinitialspace) 371 372 # nothing else indicates a preference, pick the character that 373 # dominates(?) 374 items = [(v,k) for (k,v) in delims.items()] 375 items.sort() 376 delim = items[-1][1] 377 378 skipinitialspace = (data[0].count(delim) == 379 data[0].count("%c " % delim)) 380 return (delim, skipinitialspace) 381 382 383 def has_header(self, sample): 384 # Creates a dictionary of types of data in each column. If any 385 # column is of a single type (say, integers), *except* for the first 386 # row, then the first row is presumed to be labels. If the type 387 # can't be determined, it is assumed to be a string in which case 388 # the length of the string is the determining factor: if all of the 389 # rows except for the first are the same length, it's a header. 390 # Finally, a 'vote' is taken at the end for each column, adding or 391 # subtracting from the likelihood of the first row being a header. 392 393 rdr = reader(StringIO(sample), self.sniff(sample)) 394 395 header = next(rdr) # assume first row is header 396 397 columns = len(header) 398 columnTypes = {} 399 for i in range(columns): columnTypes[i] = None 400 401 checked = 0 402 for row in rdr: 403 # arbitrary number of rows to check, to keep it sane 404 if checked > 20: 405 break 406 checked += 1 407 408 if len(row) != columns: 409 continue # skip rows that have irregular number of columns 410 411 for col in list(columnTypes.keys()): 412 413 for thisType in [int, float, complex]: 414 try: 415 thisType(row[col]) 416 break 417 except (ValueError, OverflowError): 418 pass 419 else: 420 # fallback to length of string 421 thisType = len(row[col]) 422 423 if thisType != columnTypes[col]: 424 if columnTypes[col] is None: # add new column type 425 columnTypes[col] = thisType 426 else: 427 # type is inconsistent, remove column from 428 # consideration 429 del columnTypes[col] 430 431 # finally, compare results against first row and "vote" 432 # on whether it's a header 433 hasHeader = 0 434 for col, colType in columnTypes.items(): 435 if type(colType) == type(0): # it's a length 436 if len(header[col]) != colType: 437 hasHeader += 1 438 else: 439 hasHeader -= 1 440 else: # attempt typecast 441 try: 442 colType(header[col]) 443 except (ValueError, TypeError): 444 hasHeader += 1 445 else: 446 hasHeader -= 1 447 448 return hasHeader > 0