红黑树(C++代码实现+原理简介)

Red-Black Tree

本文根据<>的第13章 Red-Black Tree以及MIT OCW课程6.046J,使用C++语言,对书中的红黑树数据结构进行了实现。全部代码附在文末,核心代码大约(270多行)。

红黑树需要满足的五条性质
  1. 所有点都是红色/黑色的;
  2. 根节点是黑色的;
  3. 所有叶子节点都是黑色的;
  4. 对于红色节点,它的儿子节点都是黑色的;
  5. 对于每一个节点x,从x节点到x往下的所有叶子的简单路径上的黑色节点数量相同(称该数量为the black height of node, 记为 b h ( x ) bh(x) bh(x))。
引理 13.1

一棵具有 n n n个内部节点的红黑树的高度至多为 2 l g ( n + 1 ) 2lg(n+1) 2lg(n+1).

证明:

对根节点 x x x,有 n ≥ ( 2 b h ( x ) − 1 ) + ( 2 b h ( x ) − 1 ) + 1 n≥(2^{bh(x)} -1)+(2^{bh(x)} -1)+1 n(2bh(x)1)+(2bh(x)1)+1
n ≥ 2 b h ( x ) − 1 n≥2^{bh(x)}-1 n2bh(x)1
2 × b h ( x ) ≥ h ( x ) 2\times bh(x)≥h(x) 2×bh(x)h(x) //考虑从根到叶子节点的一条简单路径是红黑相间的情况;
h ( x ) ≤ 2 l g ⁡ ( n + 1 ) h(x)≤2lg⁡(n+1) h(x)2lg(n+1)

数据结构定义

Node *nil 作为外部唯一辅助叶子节点,颜色为黑色。
红黑树(C++代码实现+原理简介)_第1张图片

const static bool RED = 0;
const static bool BLACK = 1;
struct Node
{
    int val;
    bool color;             //颜色
    Node *left, *right, *p; //左,右孩子,父节点        
    Node(const int &v,const bool &c=RED,Node *l=nullptr, Node *r=nullptr, Node *_p = nullptr)
    :val(v),color(c),left(l),right(r),p(_p){}
};
struct RBTree
{
    Node *root;             //树根
    Node *nil;               //外部节点, color: 黑色
    RBTree()
    {
        nil = new Node(-1, BLACK, nil, nil, nil);
        root = nil;     
    }
};
二叉搜索树的基本操作

红黑树(C++代码实现+原理简介)_第2张图片
Left Rotation 左旋

 void left_rotate(Node* x)   //左旋
 {
     Node *y = x->right;
     x->right = y->left;
     if(y->left != nil)
     {
         y->left->p = x;
     }
     y->p = x->p; 
     if(x->p == nil)
         root = y;
     else if(x->p->left == x)
         x->p->left = y;
     else
         x->p->right = y;
     x->p = y;
     y->left = x;
}

Right Rotation右旋

void right_rotate(Node* x)  //右旋
{
    Node *y = x->left;
    x->left = y->right;
    if(y->right != nil)
        y->right->p = x;
    y->p = x->p;
    if(x->p == nil)
        root = y;
    else if(x->p->left == x)
        x->p->left = y;
    else
        x->p->right = y;
    x->p = y;
    y->right = x;
}

Insert 插入

Node* insert_bst(Node* &p, Node* &r, const int &v)
{
    if(r == nil)        //树为空时
    {
        r = new Node(v, RED, nil, nil, p);
        if( p == nil )
            root = r;
        if(v > p->val)
            p->right = r;
        else
            p->left = r;
    }
    else                //树非空
    {
        if(v < r->val)
            return insert_bst(r, r->left, v);
        else
            return insert_bst(r, r->right, v);
    }
    return r;
}
红黑树操作

RB-Insert = 二叉搜索树的插入+插入修复(insert_fixup)
红黑树(C++代码实现+原理简介)_第3张图片
红黑树(C++代码实现+原理简介)_第4张图片
红黑树(C++代码实现+原理简介)_第5张图片

void insert(const int &v)
{
    Node* z = insert_bst(nil, root, v);
    //下面是insert_fixup,分为3x2=6种情况,以对称的视角来看,则只有三种。
    while(z->p->color==RED)
    {
        if(z->p->p->left == z->p)
        {
            if(z->p->p->right->color == RED)                //A: CASE 1
            {
                z->p->color = BLACK;
                z->p->p->color = RED;
                z->p->p->right->color = BLACK;
                z = z->p->p;
            }
            else
            {
                if(z->p->right == z)                        //A: CASE 2
                {
                    z = z->p;
                    left_rotate(z);
                }                                           //A: CASE 3
                z->p->color = BLACK;
                z->p->p->color = RED;
                right_rotate(z->p->p);
            }
        }
        else
        {
            if(z->p->p->left->color == RED)                 //B: CASE 1
            {
                z->p->color = BLACK;
                z->p->p->color = RED;
                z->p->p->left->color = BLACK;
                z = z->p->p;
            }
            else
            {
                if(z->p->left == z)                         //B: CASE 2
                {
                    z = z->p;
                    right_rotate(z);
                }
                z->p->color = BLACK;                        //B: CASE 3
                z->p->p->color = RED;
                left_rotate(z->p->p);
                
            }
        }
    }
    root->color = BLACK;                                   //把根的颜色设置为BLACK
}

RB-delete删除 = 二叉树的删除+删除修复(delete_fixup)
做二叉树删除时,需要记录被删除节点的颜色。
二叉搜索树删除的四种情况(按教材上的写法实现的,自己一般习惯写只需要考虑三种情况的删除写法。)
红黑树(C++代码实现+原理简介)_第6张图片
辅助函数

Node* find_min(Node *r)
{
    Node *p = r;
    while(r!=nil)
    {
        p = r;
        r = r->left;
    }
    return p;
}
void rb_transplant(Node* &u, Node* &v)
{
    if( u->p == nil )
        root = v;
    else if( u == u->p->left )
        u->p->left = v;
    else
        u->p ->right = v;
    v->p = u->p;
}

删除函数
红黑树的删除一共有4*2=8种情况,左右对称各四种。
红黑树(C++代码实现+原理简介)_第7张图片

void rb_delete(Node *z)
{
    Node *y = z;
    bool delcol = y->color;
    Node *x = z;
    if(z->left == nil)
    {
        x = z->right;
        rb_transplant(z, z->right);
    }
    else if(z->right == nil)
    {
        x = z->left;
        rb_transplant(z, z->left);
    }
    else
    {
        y = find_min(z->right);
        delcol = y->color;
        x = y->right;
        if(y->p == z)
        {
            x->p = y;
        }
        else
        {
            rb_transplant(y, y->right);
            y->right = z->right;
            y->right->p = y;
        }
        rb_transplant(z, y);
        y->left = z->left;
        y->left->p = y;
        y->color = z->color;
    }
    if(delcol == BLACK)
        rb_delete_fixup(x);
}

修复函数

void rb_delete_fixup(Node *x)
{
    while(x != root && x->color == BLACK)
    {
        if( x == x->p->left )                                           
        {
            Node *w = x->p->right;
            if( w->color == RED )                                       //A: CASE 1
            {
                w->color = BLACK;
                x->p->color = RED;
                left_rotate(x->p);
                w = x->p->right;
            }
            if(w->left->color == BLACK and w->right->color == BLACK)    //A: CASE 2
            {
                w->color = RED;
                x = x->p;
            }
            else
            {
                if(w->right->color == BLACK )                           //A: CASE 3
                {
                    w->left->color = BLACK;
                    w->color = RED;
                    right_rotate(w);
                    w = x->p->right;
                }
                w->color = x->p->color;                                 //A: CASE 4
                x->p->color = BLACK;
                w->right->color = BLACK;
                left_rotate(x->p);
                x = root;
            }
        }
        else
        {
            Node *w = x->p->left;
            if(w->color == RED)                                         //B: CASE 1
            {
                w->color = BLACK;
                x->p->color = RED;
                right_rotate(x->p);
                w = x->p->left;
            }
            if(w->right->color==BLACK && w->left->color==RED)           //B: CASE 2
            {
                w->color = RED;
                x = x->p;
            }
            else
            {
                if(w->left->color == BLACK)                             //B: CASE 3
                {
                    w->right->color = BLACK;
                    w->color = RED;
                    left_rotate(w);
                    w = x->p->left;
                }
                w->color = x->p->color;                                 //B: CASE 4
                x->p->color = BLACK;
                w->left->color = BLACK;
                right_rotate(x->p);
                x = root;
            }
        }
    }
    x->color = BLACK;
}
RB-Tree全部代码
#include 
using namespace std;
const static bool RED = 0;
const static bool BLACK = 1;
struct Node
{
    int val;
    bool color;             //颜色
    Node *left, *right, *p; //左,右孩子,父节点        
    Node(const int &v,const bool &c=RED,Node *l=nullptr, Node *r=nullptr, Node *_p = nullptr):val(v),color(c),left(l),right(r),p(_p){}
};
struct RBTree
{
    Node *root;             //树根
    Node *nil;              //外部节点, color: 黑色
    RBTree()
    {
        nil = new Node(-1, BLACK, nil, nil, nil);
        root = nil;     
    }
    void left_rotate(Node* x)   //左旋
    {
        Node *y = x->right;
        x->right = y->left;
        if(y->left != nil)
        {
            y->left->p = x;
        }
        y->p = x->p; 
        if(x->p == nil)
            root = y;
        else if(x->p->left == x)
            x->p->left = y;
        else
            x->p->right = y;
        x->p = y;
        y->left = x;
    }
    void right_rotate(Node* x)  //右旋
    {
        Node *y = x->left;
        x->left = y->right;
        if(y->right != nil)
            y->right->p = x;
        y->p = x->p;
        if(x->p == nil)
            root = y;
        else if(x->p->left == x)
            x->p->left = y;
        else
            x->p->right = y;
        x->p = y;
        y->right = x;
    }
    Node* insert_bst(Node* &p, Node* &r, const int &v)
    {
        if(r == nil)        //树为空时
        {
            r = new Node(v, RED, nil, nil, p);
            if( p == nil )
                root = r;
            if(v > p->val)
                p->right = r;
            else
                p->left = r;
        }
        else                //树非空
        {
            if(v < r->val)
                return insert_bst(r, r->left, v);
            else
                return insert_bst(r, r->right, v);
        }
        return r;
    }
    void insert(const int &v)
    {
        Node* z = insert_bst(nil, root, v);
        while(z->p->color==RED)
        {
            if(z->p->p->left == z->p)
            {
                if(z->p->p->right->color == RED)                //A: CASE 1
                {
                    z->p->color = BLACK;
                    z->p->p->color = RED;
                    z->p->p->right->color = BLACK;
                    z = z->p->p;
                }
                else
                {
                    if(z->p->right == z)                        //A: CASE 2
                    {
                        z = z->p;
                        left_rotate(z);
                    }                                           //A: CASE 3
                    z->p->color = BLACK;
                    z->p->p->color = RED;
                    right_rotate(z->p->p);
                }
            }
            else
            {
                if(z->p->p->left->color == RED)                 //B: CASE 1
                {
                    z->p->color = BLACK;
                    z->p->p->color = RED;
                    z->p->p->left->color = BLACK;
                    z = z->p->p;
                }
                else
                {
                    if(z->p->left == z)                         //B: CASE 2
                    {
                        z = z->p;
                        right_rotate(z);
                    }
                    z->p->color = BLACK;                        //B: CASE 3
                    z->p->p->color = RED;
                    left_rotate(z->p->p);
                    
                }
            }
        }
        root->color = BLACK;                                   //把根的颜色设置为BLACK
    }
    Node* find_min(Node *r)
    {
        Node *p = r;
        while(r!=nil)
        {
            p = r;
            r = r->left;
        }
        return p;
    }
    Node* getNode(Node *r, const int &v)
    {
        if(r == nil)
            return nil;
        if(r->val == v)
            return r;
        else if( v < r->val )
            return getNode(r->left, v);
        else
            return getNode(r->right, v);
    }
    Node* getNode(const int &v)
    {
        return getNode(root, v);
    }
    void rb_delete_fixup(Node *x)
    {
        while(x != root && x->color == BLACK)
        {
            if( x == x->p->left )                                           
            {
                Node *w = x->p->right;
                if( w->color == RED )                                       //A: CASE 1
                {
                    w->color = BLACK;
                    x->p->color = RED;
                    left_rotate(x->p);
                    w = x->p->right;
                }
                if(w->left->color == BLACK and w->right->color == BLACK)    //A: CASE 2
                {
                    w->color = RED;
                    x = x->p;
                }
                else
                {
                    if(w->right->color == BLACK )                           //A: CASE 3
                    {
                        w->left->color = BLACK;
                        w->color = RED;
                        right_rotate(w);
                        w = x->p->right;
                    }
                    w->color = x->p->color;                                 //A: CASE 4
                    x->p->color = BLACK;
                    w->right->color = BLACK;
                    left_rotate(x->p);
                    x = root;
                }
            }
            else
            {
                Node *w = x->p->left;
                if(w->color == RED)                                         //B: CASE 1
                {
                    w->color = BLACK;
                    x->p->color = RED;
                    right_rotate(x->p);
                    w = x->p->left;
                }
                if(w->right->color==BLACK && w->left->color==RED)           //B: CASE 2
                {
                    w->color = RED;
                    x = x->p;
                }
                else
                {
                    if(w->left->color == BLACK)                             //B: CASE 3
                    {
                        w->right->color = BLACK;
                        w->color = RED;
                        left_rotate(w);
                        w = x->p->left;
                    }
                    w->color = x->p->color;                                 //B: CASE 4
                    x->p->color = BLACK;
                    w->left->color = BLACK;
                    right_rotate(x->p);
                    x = root;
                }
            }
        }
        x->color = BLACK;
    }
    void rb_transplant(Node* &u, Node* &v)
    {
        if( u->p == nil )
            root = v;
        else if( u == u->p->left )
            u->p->left = v;
        else
            u->p ->right = v;
        v->p = u->p;
    }
    void rb_delete(Node *z)
    {
        Node *y = z;
        bool delcol = y->color;
        Node *x = z;
        if(z->left == nil)
        {
            x = z->right;
            rb_transplant(z, z->right);
        }
        else if(z->right == nil)
        {
            x = z->left;
            rb_transplant(z, z->left);
        }
        else
        {
            y = find_min(z->right);
            delcol = y->color;
            x = y->right;
            if(y->p == z)
            {
                x->p = y;
            }
            else
            {
                rb_transplant(y, y->right);
                y->right = z->right;
                y->right->p = y;
            }
            rb_transplant(z, y);
            y->left = z->left;
            y->left->p = y;
            y->color = z->color;
        }
        if(delcol == BLACK)
            rb_delete_fixup(x);
    }
    void rb_delete(const int &v)
    {
        Node *z = getNode(root, v);
        if(z == nil)
            return ;
        rb_delete(z);
    }
    void in_order(Node *r)
    {
        if(r == nil || r == nullptr)
            return ;
        in_order(r->left);
        cout << r->val << " " << r->color << endl;
        in_order(r->right);
    }
    void in_order()
    {
        cout << "in: " << endl;
        in_order(root);
    }
    void pre_order(Node *r)
    {
        if(r == nil || r == nullptr)
            return ;
        cout << r->val << " " << r->color << endl;
        pre_order(r->left);
        pre_order(r->right);
    }
    void pre_order()
    {
        cout << "pre:" << endl;
        pre_order(root);
    }
};
int main()
{
    freopen("bst.txt","r",stdin);
    int n;
    cin >> n;
    int v;
    RBTree T;
    for(int i=0;i<n;i++)
    {
        cin >> v;
        T.insert(v);
    }
    T.in_order();
    T.pre_order();
    //test
    //for (int i = 0; i < n; i++)
    {
        cout << "delete: " << 8 << endl;
        T.rb_delete(8);
        T.in_order();
        T.pre_order();
    }
    return 0;
}
输入

8
4 7 6 9 8 1 2 3

运行结果

in:
1 1
2 0
3 0
4 1
6 1
7 0
8 1
9 0
pre:
6 1
2 0
1 1
4 1
3 0
8 1
7 0
9 0
delete: 8
in:
1 1
2 0
3 0
4 1
6 1
7 0
9 1
pre:
6 1
2 0
1 1
4 1
3 0
9 1
7 0

参考文献

[1]. Cormen, Thomas H. , et al. Introduction to Algorithms, Third Edition, 308~337. The MIT Press, 2009.

你可能感兴趣的:(算法笔记)