有趣免费的开源机器人课程实践指北-2019-
https://blog.csdn.net/ZhangRelay/article/details/89191896
15年底工作进入正轨,如今已经18年了,时间好快,过去的2年多,用一个词概括就是“狂躁”,折腾新课,到处出差学习,18年开始要专注于智能机器人的教学与科研工作了,三字目标:慢、简、静。欲速不达,精简目标,宁静致远。
所有课程需要依据发展补充和更新最新的内容,否则讲述过时的技术和知识,害人害己。
资讯信息类:知乎推荐、机器人网、ROS动态、雷锋网、cnBeta等。
智能机器人课程主要包括人工智能、机器人控制、SLAM技术、人机交互等很多内容,依据课程大纲进行更新和完善。
推荐
--掘金翻译计划,可能是世界最大最好的英译中技术社区,最懂读者和译者的翻译平台: https://juejin.im/tag/掘金翻译计划
掘金翻译计划
掘金翻译计划 是一个翻译优质互联网技术文章的社区,文章来源为 掘金 上的英文分享文章。内容覆盖人工智能、Android、iOS、React、前端、后端、产品、设计 等领域,读者为热爱新技术的新锐开发者。
掘金翻译计划目前翻译完成 850 余篇文章,共有近 800 名译者贡献翻译。
官方指南
推荐优质英文文章到掘金翻译计划
翻译计划译者教程
- 如何参与翻译
- 关于如何提交翻译以及后续更新的教程
- 如何参与校对及校对的正确姿势
- 文章分享到掘金指南
- 译文排版规则指北
合作伙伴
近期文章列表
官方文档及手册
- TensorFlow 中文文档
- GraphQL 中文文档
- Under-the-hood-ReactJS 系列教程
- 系统设计入门教程
- Google Interview University 面试指北
- 前端开发者指南(2017)
- macOS Security and Privacy Guide
- State of Vue.js report 2017 中文版
区块链
- 比特币的三个经济阶段 (ppp-man 翻译)
- 加密货币泡沫为什么会破裂? (GreenLim 翻译)
- 20 年后比特币将会变成什么样 - 第一部分 (ZiXYu 翻译)
- 僵尸币时代即将到来? (wendylinlin 翻译)
- 从零到一用 Python 写一个区块链 (cdpath 翻译)
- 所有区块链译文>>
人工智能
- 使用深度学习自动生成HTML代码 - 第 1 部分 (sakila1012 翻译)
- Facebook 开源了物体检测研究项目 Detectron (SeanW20 翻译)
- IBM 工程师的 TensorFlow 入门指北 (JohnJiangLA 翻译)
- 如何使用 Golang 中的 Go-Routines 写出高性能的代码 (tmpbook 翻译)
- 所有 AI 译文>>
Android
- 函数式 Java 到函数式 Kotlin 的转换 (huanglizhuo 翻译)
- 开发者须知:女性用户和手机游戏 (corresponding 翻译)
- 像奥利奥一样的双重安全措施,尽在 Android Oreo (XPGSnail 翻译)
- ProGuard 在 Android 上的使用姿势 (dieyidezui 翻译)
- 所有 Android 译文>>
iOS
- Swift 中的值类型与引用类型使用指北 (DeepMissea 翻译)
- Xcode 环境配置最佳实践 (swants 翻译)
- 断点:像专家一样调试代码 (pthtc 翻译)
- 17 个 Xcode 小技巧,每个 iOS 开发者都该知道 (pthtc 翻译)
- 所有 iOS 译文>>
前端
- 2018 前端性能优化清单 — 第 1 部分 (tvChan 翻译)
- 2018 前端性能优化清单 — 第 2 部分 (sakila1012 翻译)
- 2018 前端性能优化清单 — 第 3 部分 (sunshine940326 翻译)
- 2018 前端性能优化清单 — 第 4 部分 (ParadeTo 翻译)
- 所有前端译文>>
后端
- 利用双环 TDD 进行由外向内的开发 (NeilLi1992 翻译)
- Node.js 最佳实践 —— 如何在 2018 年成为更好的 Node.js 开发者 (NeilLi1992 翻译)
- 8 个技巧让你在 2018 年构建更好的 Node.js 应用程序 (PLDaily 翻译)
- 状态管理的未来: 在 Apollo Client 中使用 apollo-link-state管理本地数据 (yct21 翻译)
- 所有后端译文>>
教程
- 为什么我还没 Fix 你的 Issue (leviding 翻译)
- Chrome 开发者工具提示和技巧 (chemzqm 翻译)
- 通过 Electron 开发一个简单的桌面应用 (Zhangdroid 翻译)
- Retrofit 入门教程 (kevin xiu 翻译)
- Pokedex.org 给宠物小精灵爱好者的 web app 的技术选型 (RobertWang 翻译)
设计
- 如何紧跟未来的设计趋势:15 个让你永远不过时的资料 (kangkai124 翻译)
- 网站设计综合指南 (horizon13th 翻译)
- 2018 设计趋势 (pot-code 翻译)
- 如何紧跟未来的设计趋势:15 个让你永远不过时的资料 (kangkai124 翻译)
- 所有设计译文>>
产品
- 如果你的产品停止成长,你该怎么做? (funtrip 翻译)
- 针对失败者的体验设计 (ylq167 翻译)
- 细节是产品设计的重中之重 (iloveivyxuan 翻译)
- 单元测试,精益创业,以及两者之间的关系 (gy134340 翻译)
- 所有产品译文>>
其他
- 开启你的开源生涯 (zwwill 翻译)
- 自动化持续集成/持续分发,以节省更多时间编写代码 (NeilLi1992 翻译)
- 为什么我们从来不去感谢开源项目维护者 (leviding 翻译)
- 五天拿下硅谷五家顶级互联网公司 offer (freerambo 翻译)
- 所有其他分类译文>>
Copyright
版权声明:掘金翻译计划译文仅用于学习、研究和交流。版权归掘金翻译计划、文章作者和译者所有,欢迎非商业转载。转载前请联系译者或管理员获取授权,并在文章开头明显位置注明本文出处、译者、校对者和掘金翻译计划的完整链接,违者必究。
--
cheatsheets-ai
cheatsheets-ai
Essential Cheat Sheets for deep learning and machine learning researchers
- Tensorflow
- Keras
- Neural Networks Zoo
- Numpy
- Scipy
- Pandas-1
- Pandas-2
- Pandas-3
- Scikit-learn
- Matplotlib
- ggplot2-1
- ggplot2-2
- PySpark
- PySpark-RDD
- PySpark-SQL
- R Studio(dplyr & tidyr)-1
- R Studio(dplyr & tidyr)-2
- Neural Network Cells
- Neural Network Graphs
- Deep Learning Cheat Sheet
- All Cheat Sheets(PDF)
--
Autoware
--
Firmware
--
ros
机器人操作系统(ROS)
================================================== =============================
ROS是您的机器人的元操作系统。它提供语言无关和网络透明的通信分布机器人控制系统。
安装说明
------------------
有关完整的安装说明,包括系统必备组件和特定于平台的帮助,请参阅:
http://wiki.ros.org/ROS/Installation
--
ros2
文档位于wiki中:https://github.com/ros2/ros2/wiki
--
cartographer
--
ORB_SLAM2
--
lsd_slam
--
slambook
slambook
This is the code written for my new book about visual SLAM called "14 lectures on visual SLAM" which was released in April 2017. It is highy recommended to download the code and run it in you own machine so that you can learn more efficiently and also modify it. The code is stored by chapters like "ch2" and "ch4". Note that chapter 9 is a project so I stored it in the "project" directory.
If you have any questions about the code, please add an issue so I can see it. Contact me for more information: gao dot xiang dot thu at gmail dot com.
These codes are under MIT license. You don't need permission to use it or change it. Please cite this book if you are doing academic work: Xiang Gao, Tao Zhang, Yi Liu, Qinrui Yan, 14 Lectures on Visual SLAM: From Theory to Practice, Publishing House of Electronics Industry, 2017.
In LaTeX: @Book{Gao2017SLAM, title={14 Lectures on Visual SLAM: From Theory to Practice}, publisher = {Publishing House of Electronics Industry}, year = {2017}, author = {Xiang Gao and Tao Zhang and Yi Liu and Qinrui Yan}, }
For English readers, we are currently translating this book into an online version, see this page for details.
Contents
- ch1 Preface
- ch2 Overview of SLAM & linux, cmake
- ch3 Rigid body motion & Eigen
- ch4 Lie group and Lie Algebra & Sophus
- ch5 Cameras and Images & OpenCV
- ch6 Non-linear optimization & Ceres, g2o
- ch7 Feature based Visual Odometry
- ch8 Direct (Intensity based) Visual Odometry
- ch9 Project
- ch10 Back end optimization & Ceres, g2o
- ch11 Pose graph and Factor graph & g2o, gtsam
- ch12 Loop closure & DBoW3
- ch13 Dense reconstruction & REMODE, Octomap
slambook (中文说明)
我最近写了一本有关视觉SLAM的书籍,这是它对应的代码。书籍将会在明年春天由电子工业出版社出版。
我强烈建议你下载这个代码。书中虽然给出了一部分,但你最好在自己的机器上编译运行它们,然后对它们进行修改以获得更好的理解。这本书的代码是按章节划分的,比如第二章内容在”ch2“文件夹下。注意第九章是工程,所以我们没有”ch9“这个文件夹,而是在”project“中存储它。
如果你在运行代码中发现问题,请在这里提交一个issue,我就能看到它。如果你有更多的问题,请给我发邮件:gaoxiang12 dot mails dot tsinghua dot edu dot cn.
本书代码使用MIT许可。使用或修改、发布都不必经过我的同意。不过,如果你是在学术工作中使用它,建议你引用本书作为参考文献。
引用格式: 高翔, 张涛, 颜沁睿, 刘毅, 视觉SLAM十四讲:从理论到实践, 电子工业出版社, 2017
LaTeX格式: @Book{Gao2017SLAM, title={视觉SLAM十四讲:从理论到实践}, publisher = {电子工业出版社}, year = {2017}, author = {高翔 and 张涛 and 刘毅 and 颜沁睿}, lang = {zh} }
目录
- ch2 概述,cmake基础
- ch3 Eigen,三维几何
- ch4 Sophus,李群与李代数
- ch5 OpenCV,图像与相机模型
- ch6 Ceres and g2o,非线性优化
- ch7 特征点法视觉里程计
- ch8 直接法视觉里程计
- ch9 project
- ch10 Ceres and g2o,后端优化1
- ch11 g2o and gtsam,位姿图优化
- ch12 DBoW3,词袋方法
- ch13 稠密地图构建
关于勘误,请参照本代码根目录下的errata.xlsx文件。此文件包含本书从第一次印刷至现在的勘误信息。勘误将随着书籍的印刷版本更新。
备注
百度云备份:[https://pan.baidu.com/s/1slDE7cL] Videos: [https://space.bilibili.com/38737757]
--
mrpt
--
awesome-slam
Awesome SLAM
Simultaneous Localization and Mapping, also known as SLAM, is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.
News
- For researchers, please read the recent review paper, Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age, from Cesar Cadena, Luca Carlone et al.
Table of Contents
Books
- State Estimation for Robotic -- A Matrix Lie Group Approach by Timothy D. Barfoot, 2016
- Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods by Juan-Antonio Fernández-Madrigal and José Luis Blanco Claraco, 2012
- Simultaneous Localization and Mapping: Exactly Sparse Information Filters by Zhan Wang, Shoudong Huang and Gamini Dissanayake, 2011
- Probabilistic Robotics by Dieter Fox, Sebastian Thrun, and Wolfram Burgard, 2005
- An Invitation to 3-D Vision -- from Images to Geometric Models by Yi Ma, Stefano Soatto, Jana Kosecka and Shankar S. Sastry, 2005
- Multiple View Geometry in Computer Vision by Richard Hartley and Andrew Zisserman, 2004
- Numerical Optimization by Jorge Nocedal and Stephen J. Wright, 1999
Courses, Lectures and Workshops
- SLAM Tutorial@ICRA 2016
- Geometry and Beyond - Representations, Physics, and Scene Understanding for Robotics at Robotics: Science and Systems (2016)
- Robotics - UPenn on Coursera by Vijay Kumar (2016)
- Robot Mapping - UniFreiburg by Gian Diego Tipaldi and Wolfram Burgard (2015-2016)
- Robot Mapping - UniBonn by Cyrill Stachniss (2016)
- Introduction to Mobile Robotics - UniFreiburg by Wolfram Burgard, Michael Ruhnke and Bastian Steder (2015-2016)
- Computer Vision II: Multiple View Geometry - TUM by Daniel Cremers ( Spring 2016)
- Advanced Robotics - UCBerkeley by Pieter Abbeel (Fall 2015)
- Mapping, Localization, and Self-Driving Vehicles at CMU RI seminar by John Leonard (2015)
- The Problem of Mobile Sensors: Setting future goals and indicators of progress for SLAM sponsored by Australian Centre for Robotics and Vision (2015)
- Robotics - UPenn by Philip Dames and Kostas Daniilidis (2014)
- Autonomous Navigation for Flying Robots on EdX by Jurgen Sturm and Daniel Cremers (2014)
- Robust and Efficient Real-time Mapping for Autonomous Robots at CMU RI seminar by Michael Kaess (2014)
- KinectFusion - Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera by David Kim (2012)
- SLAM Summer School organized by Australian Centre for Field Robotics (2009)
- SLAM Summer School organized by University of Oxford and Imperial College London (2006)
- SLAM Summer School organized by KTH Royal Institute of Technology (2002)
Papers
- Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age (2016)
- Direct Sparse Odometry (2016)
- Modelling Uncertainty in Deep Learning for Camera Relocalization (2016)
- Large-Scale Cooperative 3D Visual-Inertial Mapping in a Manhattan World (2016)
- Towards Lifelong Feature-Based Mapping in Semi-Static Environments (2016)
- Tree-Connectivity: Evaluating the Graphical Structure of SLAM (2016)
- Visual-Inertial Direct SLAM (2016)
- A Unified Resource-Constrained Framework for Graph SLAM (2016)
- Multi-Level Mapping: Real-time Dense Monocular SLAM (2016)
- Lagrangian duality in 3D SLAM: Verification techniques and optimal solutions (2015)
- A Solution to the Simultaneous Localization and Map Building (SLAM) Problem
- Simulataneous Localization and Mapping with the Extended Kalman Filter
Researchers
United States
- John Leonard
- Sebastian Thrun
- Frank Dellaert
- Dieter Fox
- Stergios I. Roumeliotis
- Vijay Kumar
- Ryan Eustice
- Michael Kaess
- Guoquan (Paul) Huang
- Gabe Sibley
- Luca Carlone
- Andrea Censi
Europe
- Paul Newman
- Roland Siegwart
- Juan Nieto
- Wolfram Burgard
- Jose Neira
- Davide Scaramuzza
Australia
- Cesar Cadena
- Ian Reid
- Tim Bailey
- Gamini Dissanayake
- Shoudong Huang
Datasets
- Intel Research Lab (Seattle)
Code
- ORB-SLAM
- LSD-SLAM
- ORB-SLAM2
- DVO: Dense Visual Odometry
- SVO: Semi-Direct Monocular Visual Odometry
- G2O: General Graph Optimization
- RGBD-SLAM
Miscellaneous
Contributing
Have anything in mind that you think is awesome and would fit in this list? Feel free to send a pull request.
----