均分纸牌(贪心)

【题目描述】
有n堆纸牌,编号分别为 1,2,…, n。每堆上有若干张,但纸牌总数必为n的倍数。可以在任一堆上取若干张纸牌,然后移动。
移牌规则为:在编号为1的堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 n 的堆上取的纸牌,只能移到编号为n-1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 n=4,4堆纸牌数分别为: ① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取4张牌放到④(9 8 13 10)->从③取3张牌放到 ②(9 11 10 10)-> 从②取1张牌放到①(10 10 10 10)。

【输入】
n(n 堆纸牌,1 ≤ n ≤ 100)
a1 a2 … an (n 堆纸牌,每堆纸牌初始数,l≤ ai ≤10000)。
【输出】
所有堆均达到相等时的最少移动次数。
【输入样例】
4
9 8 17 6
【输出样例】
3

#include
using namespace std;
int main(){
 int n;
 cin>>n;
 int a[100];
 int sum=0;
 int average;
 int step=0;
 for(int i=0;i;i++)
 {
  cin>>a[i];
  sum+=a[i];
 }
 average=sum/n;
 for(int i=0;i;i++){
  if(a[i]!=average){
   a[i+1]+=a[i]-average;
   a[i]=average;
   step++;
  }
 }
 cout<;
}

你可能感兴趣的:(算法设计,C/C++)