STM32 硬件CRC和软件CRC速度比较

一、测试条件

硬件: STM32L432KC
主频: 80MHz
编译器: IAR 8.20.1
编译选项: High Speed no size constraints
CRC 生成多项式: 0x782f

二、测试方法

软件提前生成CRC表,用于查询。分别使用软件CRC算法和硬件CRC外设对一个缓存进行计算,目的是从该缓存中找到同步头。同步头共11字节,前两个字节为后九个字节的CRC校验值。通过迭代算法依次对11字节进行计算和比较,当找到同步头后返回同步头偏移量。通过时间比较两者之间的速度。

三、测试结果

迭代24464次后,从缓存中找到同步头。
不开启编译时间优化时,软件算法用时238ms,硬件CRC用时220ms。
STM32 硬件CRC和软件CRC速度比较_第1张图片

开启编译时间优化后,软件算法用时159ms,硬件CRC用时186ms。
STM32 硬件CRC和软件CRC速度比较_第2张图片

四、附测试代码

#include "user_crc.h"
#include "stm32l4xx_hal.h"

#define SOFT_CRC  1
#define HARD_CRC  2

CRC_HandleTypeDef   CrcHandle;
uint16_t crc_tab[256];

void crc_init()
{
    /*##-1- Configure the CRC peripheral #######################################*/
    CrcHandle.Instance = CRC;

    /* The default polynomial is not used. It is required to defined it in CrcHandle.Init.GeneratingPolynomial*/    
    CrcHandle.Init.DefaultPolynomialUse      = DEFAULT_POLYNOMIAL_DISABLE;

    /* Set the value of the polynomial */
    CrcHandle.Init.GeneratingPolynomial      = CRC_POLYNOMIAL_16B;

    /* The user-defined generating polynomial generates a
         16-bit long CRC */
    CrcHandle.Init.CRCLength                 = CRC_POLYLENGTH_16B;

    /* The default init value is used */
    CrcHandle.Init.DefaultInitValueUse       = DEFAULT_INIT_VALUE_DISABLE;

    /* The input data are not inverted */
    CrcHandle.Init.InputDataInversionMode    = CRC_INPUTDATA_INVERSION_NONE;

    /* The output data are not inverted */
    CrcHandle.Init.OutputDataInversionMode   = CRC_OUTPUTDATA_INVERSION_DISABLE;

    /* The input data are 8-bit long */
    CrcHandle.InputDataFormat                = CRC_INPUTDATA_FORMAT_BYTES;

    if (HAL_CRC_Init(&CrcHandle) != HAL_OK)
    {
        /* Initialization Error */
        Error_Handler();
    }
}

void crc_buildTab(uint16_t gen_polynom)
{
    for(int value = 0; value < 256; value++) 
    {
        uint16_t crc = value << 8;

        for(int i = 0; i < 8; i++) 
        {
            if(crc & 0x8000)
                crc = (crc << 1) ^ gen_polynom;
            else
                crc = crc << 1;
        }

        crc_tab[value] = crc;
    }

}

uint16_t soft_crc_calc(const uint8_t *data, uint16_t len) 
{
    uint16_t crc = 0x0000;

    for(uint16_t offset = 0; offset < len; offset++)
    {
        crc = (crc << 8) ^ crc_tab[(crc >> 8) ^ data[offset]];
    }

    return crc;
}

uint16_t hard_crc_calc(const uint8_t *data, uint16_t len)
{
    uint16_t crc = 0x0000;

    crc = HAL_CRC_Calculate(&CrcHandle, (uint32_t *)data, len);

    return crc;
}

uint16_t find_sync_word(uint8_t *data, uint32_t data_len, uint8_t crc_type)
{
    uint8_t *ptr;
    uint16_t crc_stored,crc_calced;

    ptr = data;

    for(uint32_t i=0; i9; i++)
    {
        crc_stored = ptr[0]<<8 | ptr[1];
        if(crc_type == SOFT_CRC)
        {
            crc_calced = soft_crc_calc((uint8_t *)&ptr[2], 9);
        }
        else if(crc_type == HARD_CRC)
        {
            crc_calced = hard_crc_calc((uint8_t *)&ptr[2], 9);
        }

        if( (crc_stored != 0x0000) && (crc_stored == crc_calced) )
        {
            printf("crc check ok! crc1 = 0x%04x,crc2 = 0x%04x\n", crc_stored,crc_calced);
            return i;
        }

        ptr++;
    }

    return 0xffff;
}


void crc_test()
{
    uint32_t tick1,tick2;
    uint32_t find_cnt = 0;
    uint16_t gen_polynom = 0x782f;

    crc_init();
    crc_buildTab(gen_polynom);

    tick1 = HAL_GetTick();
    find_cnt = find_sync_word((uint8_t *)superFrameBuf, sizeof(superFrameBuf), SOFT_CRC);
    tick2 = HAL_GetTick();
    printf("use soft_crc find sync word after %d iteration, use time %d\n", find_cnt, tick2 - tick1);

    printf("\n");

    tick1 = HAL_GetTick();
    find_cnt = find_sync_word((uint8_t *)superFrameBuf, sizeof(superFrameBuf), HARD_CRC);
    tick2 = HAL_GetTick();
    printf("use hard_crc find sync word after %d iteration, use time %d\n", find_cnt, tick2 - tick1);

}

转载于:https://www.cnblogs.com/cyang812/p/8954569.html

你可能感兴趣的:(STM32 硬件CRC和软件CRC速度比较)