自己动手实现读写锁(read-write lock)

书接前文(自己动手实现自旋锁(spinlock)),本文将详细讲解自己动手实现读写锁(read-write lock)。

很多时候,我们的进程并不需要改变它所访问的数据结构,它们只是以只读的方式访问某一变量或结构某字段,此时如果多个进程同时申请访问相同的数据,为了效率起见,我们可以让这些进程同时访问它们所需要的数据,而不需要进行加锁和解锁操作,自旋锁并不区分进程是读访问还是写访问,此时使用自旋锁是很不明智的,所以精心设计的读写锁便发挥了作用。


读写锁(read-write lock)

最简单的读写锁使用自旋锁来控制写访问,并用一个counter域来标识当前读者数目,

typedef struct dumbrwlock dumbrwlock;
struct dumbrwlock
{
spinlock lock;
unsigned readers;
};

static void dumb_wrlock(dumbrwlock *l)
{
/* Get write lock */
spin_lock(&l->lock);

/* Wait for readers to finish */
while (l->readers) cpu_relax();
}

static void dumb_wrunlock(dumbrwlock *l)
{
spin_unlock(&l->lock);
}

static int dumb_wrtrylock(dumbrwlock *l)
{
/* Want no readers */
if (l->readers) return EBUSY;

/* Try to get write lock */
if (spin_trylock(&l->lock)) return EBUSY;

if (l->readers)
{
/* Oops, a reader started */
spin_unlock(&l->lock);
return EBUSY;
}

/* Success! */
return 0;
}

static void dumb_rdlock(dumbrwlock *l)
{
while (1)
{
/* Speculatively take read lock */
atomic_inc(&l->readers);

/* Success? */
if (!l->lock) return;

/* Failure - undo, and wait until we can try again */
atomic_dec(&l->readers);
while (l->lock) cpu_relax();
}
}

static void dumb_rdunlock(dumbrwlock *l)
{
atomic_dec(&l->readers);
}

static int dumb_rdtrylock(dumbrwlock *l)
{
/* Speculatively take read lock */
atomic_inc(&l->readers);

/* Success? */
if (!l->lock) return 0;

/* Failure - undo */
atomic_dec(&l->readers);

return EBUSY;
}

static int dumb_rdupgradelock(dumbrwlock *l)
{
/* Try to convert into a write lock */
if (spin_trylock(&l->lock)) return EBUSY;

/* I'm no longer a reader */
atomic_dec(&l->readers);

/* Wait for all other readers to finish */
while (l->readers) cpu_relax();

return 0;
}

如果我们把上面实现读写锁的自旋锁算法改成ticket lock算法,则可以大大提高性能,

typedef struct dumbtrwlock dumbtrwlock;
struct dumbtrwlock
{
ticketlock lock;
unsigned readers;
};

static void dumbt_wrlock(dumbtrwlock *l)
{
/* Get lock */
ticket_lock(&l->lock);

/* Wait for readers to finish */
while (l->readers) cpu_relax();
}

static void dumbt_wrunlock(dumbtrwlock *l)
{
ticket_unlock(&l->lock);
}

static int dumbt_wrtrylock(dumbtrwlock *l)
{
/* Want no readers */
if (l->readers) return EBUSY;

/* Try to get write lock */
if (ticket_trylock(&l->lock)) return EBUSY;

if (l->readers)
{
/* Oops, a reader started */
ticket_unlock(&l->lock);
return EBUSY;
}

/* Success! */
return 0;
}

static void dumbt_rdlock(dumbtrwlock *l)
{
while (1)
{
/* Success? */
if (ticket_lockable(&l->lock))
{
/* Speculatively take read lock */
atomic_inc(&l->readers);

/* Success? */
if (ticket_lockable(&l->lock)) return;

/* Failure - undo, and wait until we can try again */
atomic_dec(&l->readers);
}

while (!ticket_lockable(&l->lock)) cpu_relax();
}
}

static void dumbt_rdunlock(dumbtrwlock *l)
{
atomic_dec(&l->readers);
}

static int dumbt_rdtrylock(dumbtrwlock *l)
{
/* Speculatively take read lock */
atomic_inc(&l->readers);

/* Success? */
if (ticket_lockable(&l->lock)) return 0;

/* Failure - undo */
atomic_dec(&l->readers);

return EBUSY;
}

static int dumbt_rdupgradelock(dumbtrwlock *l)
{
/* Try to convert into a write lock */
if (ticket_trylock(&l->lock)) return EBUSY;

/* I'm no longer a reader */
atomic_dec(&l->readers);

/* Wait for all other readers to finish */
while (l->readers) cpu_relax();

return 0;
}

为了减少竞争,提高执行速度,我们采用另外一种复杂的算法,该算法在ReatOS中使用,模拟Windows的slim read-write lock(SRW lock),该算法使用了等待队列,并用bitlock来控制进程对等待队列的访问,因此等待者可以在隔离的内存位置自旋,以提高扩展性,

/* Have a wait block */
#define SRWLOCK_WAIT 1

/* Users are readers */
#define SRWLOCK_SHARED 2

/* Bit-lock for editing the wait block */
#define SRWLOCK_LOCK 4
#define SRWLOCK_LOCK_BIT 2

/* Mask for the above bits */
#define SRWLOCK_MASK 7

/* Number of current users * 8 */
#define SRWLOCK_USERS 8

typedef struct srwlock srwlock;
struct srwlock
{
uintptr_t p;
};

typedef struct srw_sw srw_sw;
struct srw_sw
{
uintptr_t spin;
srw_sw *next;
};

typedef struct srw_wb srw_wb;
struct srw_wb
{
/* s_count is the number of shared acquirers * SRWLOCK_USERS. */
uintptr_t s_count;

/* Last points to the last wait block in the chain. The value
is only valid when read from the first wait block.
*/
srw_wb *last;

/* Next points to the next wait block in the chain. */
srw_wb *next;

/* The wake chain is only valid for shared wait blocks */
srw_sw *wake;
srw_sw *last_shared;

int ex;
};

/* Wait for control of wait block */
static srw_wb *lock_wb(srwlock *l)
{
uintptr_t p;

/* Spin on the wait block bit lock */
while (atomic_bitsetandtest(&l->p, SRWLOCK_LOCK_BIT)) cpu_relax();

p = l->p;
barrier();

if (!(p & SRWLOCK_WAIT))
{
/* Oops, looks like the wait block was removed. */
atomic_clear_bit(&l->p, SRWLOCK_LOCK_BIT);
return NULL;
}

return (srw_wb *)(p & ~SRWLOCK_MASK);
}

static void srwlock_init(srwlock *l)
{
l->p = 0;
}

static void srwlock_rdlock(srwlock *l)
{
srw_wb swblock;
srw_sw sw;
uintptr_t p;
srw_wb *wb, *shared;

while (1)
{
barrier();
p = l->p;

cpu_relax();

if (!p)
{
/* This is a fast path, we can simply try to set the shared count to 1 */
if (!cmpxchg(&l->p, 0, SRWLOCK_USERS | SRWLOCK_SHARED)) return;

continue;
}

/* Don't interfere with locking */
if (p & SRWLOCK_LOCK) continue;

if (p & SRWLOCK_SHARED)
{
if (!(p & SRWLOCK_WAIT))
{
/* This is a fast path, just increment the number of current shared locks */
if (cmpxchg(&l->p, p, p + SRWLOCK_USERS) == p) return;
}
else
{
/* There's other waiters already, lock the wait blocks and increment the shared count */
wb = lock_wb(l);
if (wb) break;
}

continue;
}

/* Initialize wait block */
swblock.ex = FALSE;
swblock.next = NULL;
swblock.last = &swblock;
swblock.wake = &sw;

sw.next = NULL;
sw.spin = 0;

if (!(p & SRWLOCK_WAIT))
{
/*
* We need to setup the first wait block.
* Currently an exclusive lock is held, change the lock to contended mode.
*/
swblock.s_count = SRWLOCK_USERS;
swblock.last_shared = &sw;

if (cmpxchg(&l->p, p, (uintptr_t)&swblock | SRWLOCK_WAIT) == p)
{
while (!sw.spin) cpu_relax();
return;
}

continue;
}

/* Handle the contended but not shared case */

/*
* There's other waiters already, lock the wait blocks and increment the shared count.
* If the last block in the chain is an exclusive lock, add another block.
*/
swblock.s_count = 0;

wb = lock_wb(l);
if (!wb) continue;

shared = wb->last;
if (shared->ex)
{
shared->next = &swblock;
wb->last = &swblock;

shared = &swblock;
}
else
{
shared->last_shared->next = &sw;
}

shared->s_count += SRWLOCK_USERS;
shared->last_shared = &sw;

/* Unlock */
barrier();
l->p &= ~SRWLOCK_LOCK;

/* Wait to be woken */
while (!sw.spin) cpu_relax();

return;
}

/* The contended and shared case */
sw.next = NULL;
sw.spin = 0;

if (wb->ex)
{
/*
* We need to setup a new wait block.
* Although we're currently in a shared lock and we're acquiring
* a shared lock, there are exclusive locks queued in between.
* We need to wait until those are released.
*/
shared = wb->last;

if (shared->ex)
{
swblock.ex = FALSE;
swblock.s_count = SRWLOCK_USERS;
swblock.next = NULL;
swblock.last = &swblock;
swblock.wake = &sw;
swblock.last_shared = &sw;

shared->next = &swblock;
wb->last = &swblock;
}
else
{
shared->last_shared->next = &sw;
shared->s_count += SRWLOCK_USERS;
shared->last_shared = &sw;
}
}
else
{
wb->last_shared->next = &sw;
wb->s_count += SRWLOCK_USERS;
wb->last_shared = &sw;
}

/* Unlock */
barrier();
l->p &= ~SRWLOCK_LOCK;

/* Wait to be woken */
while (!sw.spin) cpu_relax();
}


static void srwlock_rdunlock(srwlock *l)
{
uintptr_t p, np;
srw_wb *wb;
srw_wb *next;

while (1)
{
barrier();
p = l->p;

cpu_relax();

if (p & SRWLOCK_WAIT)
{
/*
* There's a wait block, we need to wake a pending exclusive acquirer,
* if this is the last shared release.
*/
wb = lock_wb(l);
if (wb) break;

continue;
}

/* Don't interfere with locking */
if (p & SRWLOCK_LOCK) continue;

/*
* This is a fast path, we can simply decrement the shared
* count and store the pointer
*/
np = p - SRWLOCK_USERS;

/* If we are the last reader, then the lock is unused */
if (np == SRWLOCK_SHARED) np = 0;

/* Try to release the lock */
if (cmpxchg(&l->p, p, np) == p) return;
}

wb->s_count -= SRWLOCK_USERS;

if (wb->s_count)
{
/* Unlock */
barrier();
l->p &= ~SRWLOCK_LOCK;
return;
}

next = wb->next;
if (next)
{
/*
* There's more blocks chained, we need to update the pointers
* in the next wait block and update the wait block pointer.
*/
np = (uintptr_t)next | SRWLOCK_WAIT;

next->last = wb->last;
}
else
{
/* Convert the lock to a simple exclusive lock. */
np = SRWLOCK_USERS;
}

barrier();
/* This also unlocks wb lock bit */
l->p = np;
barrier();
wb->wake = (void *) 1;
barrier();

/* We released the lock */
}

static int srwlock_rdtrylock(srwlock *s)
{
uintptr_t p = s->p;

barrier();

/* This is a fast path, we can simply try to set the shared count to 1 */
if (!p && (cmpxchg(&s->p, 0, SRWLOCK_USERS | SRWLOCK_SHARED) == 0)) return 0;

if ((p & (SRWLOCK_SHARED | SRWLOCK_WAIT)) == SRWLOCK_SHARED)
{
/* This is a fast path, just increment the number of current shared locks */
if (cmpxchg(&s->p, p, p + SRWLOCK_USERS) == p) return 0;
}

return EBUSY;
}


static void srwlock_wrlock(srwlock *l)
{
srw_wb swblock;
uintptr_t p, np;

/* Fastpath - no other readers or writers */
if (!l->p && (!cmpxchg(&l->p, 0, SRWLOCK_USERS))) return;

/* Initialize wait block */
swblock.ex = TRUE;
swblock.next = NULL;
swblock.last = &swblock;
swblock.wake = NULL;

while (1)
{
barrier();
p = l->p;
cpu_relax();

if (p & SRWLOCK_WAIT)
{
srw_wb *wb = lock_wb(l);
if (!wb) continue;

/* Complete Initialization of block */
swblock.s_count = 0;

wb->last->next = &swblock;
wb->last = &swblock;

/* Unlock */
barrier();
l->p &= ~SRWLOCK_LOCK;

/* Has our wait block became the first one in the chain? */
while (!swblock.wake) cpu_relax();

return;
}

/* Fastpath - no other readers or writers */
if (!p)
{
if (!cmpxchg(&l->p, 0, SRWLOCK_USERS)) return;
continue;
}

/* Don't interfere with locking */
if (p & SRWLOCK_LOCK) continue;

/* There are no wait blocks so far, we need to add ourselves as the first wait block. */
if (p & SRWLOCK_SHARED)
{
swblock.s_count = p & ~SRWLOCK_MASK;
np = (uintptr_t)&swblock | SRWLOCK_SHARED | SRWLOCK_WAIT;
}
else
{
swblock.s_count = 0;
np = (uintptr_t)&swblock | SRWLOCK_WAIT;
}

/* Try to make change */
if (cmpxchg(&l->p, p, np) == p) break;
}

/* Has our wait block became the first one in the chain? */
while (!swblock.wake) cpu_relax();
}


static void srwlock_wrunlock(srwlock *l)
{
uintptr_t p, np;
srw_wb *wb;
srw_wb *next;
srw_sw *wake, *wake_next;

while (1)
{
barrier();
p = l->p;
cpu_relax();

if (p == SRWLOCK_USERS)
{
/*
* This is the fast path, we can simply clear the SRWLOCK_USERS bit.
* All other bits should be 0 now because this is a simple exclusive lock,
* and no one else is waiting.
*/

if (cmpxchg(&l->p, SRWLOCK_USERS, 0) == SRWLOCK_USERS) return;

continue;
}

/* There's a wait block, we need to wake the next pending acquirer */
wb = lock_wb(l);
if (wb) break;
}

next = wb->next;
if (next)
{
/*
* There's more blocks chained, we need to update the pointers
* in the next wait block and update the wait block pointer.
*/
np = (uintptr_t)next | SRWLOCK_WAIT;
if (!wb->ex)
{
/* Save the shared count */
next->s_count = wb->s_count;

np |= SRWLOCK_SHARED;
}

next->last = wb->last;
}
else
{
/* Convert the lock to a simple lock. */
if (wb->ex)
{
np = SRWLOCK_USERS;
}
else
{
np = wb->s_count | SRWLOCK_SHARED;
}
}

barrier();
/* Also unlocks lock bit */
l->p = np;
barrier();

if (wb->ex)
{
barrier();
/* Notify the next waiter */
wb->wake = (void *) 1;
barrier();
return;
}

/* We now need to wake all others required. */
for (wake = wb->wake; wake; wake = wake_next)
{
barrier();
wake_next = wake->next;
barrier();
wake->spin = 1;
barrier();
}
}

static int srwlock_wrtrylock(srwlock *s)
{
/* No other readers or writers? */
if (!s->p && (cmpxchg(&s->p, 0, SRWLOCK_USERS) == 0)) return 0;

return EBUSY;
}

另一种可能的实现是结合读者数目counter和写者状态的一些信息来设计锁,Linux内核正是使用该算法,读者优先的读写锁,

#define RW_WAIT_BIT        0
#define RW_WRITE_BIT 1
#define RW_READ_BIT 2

#define RW_WAIT 1
#define RW_WRITE 2
#define RW_READ 4

typedef unsigned rwlock;

static void wrlock(rwlock *l)
{
while (1)
{
unsigned state = *l;

/* No readers or writers? */
if (state < RW_WRITE)
{
/* Turn off RW_WAIT, and turn on RW_WRITE */
if (cmpxchg(l, state, RW_WRITE) == state) return;

/* Someone else got there... time to wait */
state = *l;
}

/* Turn on writer wait bit */
if (!(state & RW_WAIT)) atomic_set_bit(l, RW_WAIT_BIT);

/* Wait until can try to take the lock */
while (*l > RW_WAIT) cpu_relax();
}
}

static void wrunlock(rwlock *l)
{
atomic_add(l, -RW_WRITE);
}

static int wrtrylock(rwlock *l)
{
unsigned state = *l;

if ((state < RW_WRITE) && (cmpxchg(l, state, state + RW_WRITE) == state)) return 0;

return EBUSY;
}

static void rdlock(rwlock *l)
{
while (1)
{
/* A writer exists? */
while (*l & (RW_WAIT | RW_WRITE)) cpu_relax();

/* Try to get read lock */
if (!(atomic_xadd(l, RW_READ) & (RW_WAIT | RW_WRITE))) return;

/* Undo */
atomic_add(l, -RW_READ);
}
}

static void rdunlock(rwlock *l)
{
atomic_add(l, -RW_READ);
}

static int rdtrylock(rwlock *l)
{
/* Try to get read lock */
unsigned state = atomic_xadd(l, RW_READ);

if (!(state & (RW_WAIT | RW_WRITE))) return 0;

/* Undo */
atomic_add(l, -RW_READ);

return EBUSY;
}

/* Get a read lock, even if a writer is waiting */
static int rdforcelock(rwlock *l)
{
/* Try to get read lock */
unsigned state = atomic_xadd(l, RW_READ);

/* We succeed even if a writer is waiting */
if (!(state & RW_WRITE)) return 0;

/* Undo */
atomic_add(l, -RW_READ);

return EBUSY;
}

/* Try to upgrade from a read to a write lock atomically */
static int rdtryupgradelock(rwlock *l)
{
/* Someone else is trying (and will succeed) to upgrade to a write lock? */
if (atomic_bitsetandtest(l, RW_WRITE_BIT)) return EBUSY;

/* Don't count myself any more */
atomic_add(l, -RW_READ);

/* Wait until there are no more readers */
while (*l > (RW_WAIT | RW_WRITE)) cpu_relax();

return 0;
}

另外一种高效的实现方法如下,该算法由John Mellor-Crummey 和 Michael Scott 提出,详见"Scalable Reader-Writer Synchronization for Shared-Memory Multiprocessors",

typedef union rwticket rwticket;

union rwticket
{
unsigned u;
unsigned short us;
__extension__ struct
{
unsigned char write;
unsigned char read;
unsigned char users;
} s;
};

static void rwticket_wrlock(rwticket *l)
{
unsigned me = atomic_xadd(&l->u, (1<<16));
unsigned char val = me >> 16;

while (val != l->s.write) cpu_relax();
}

static void rwticket_wrunlock(rwticket *l)
{
rwticket t = *l;

barrier();

t.s.write++;
t.s.read++;

*(unsigned short *) l = t.us;
}

static int rwticket_wrtrylock(rwticket *l)
{
unsigned me = l->s.users;
unsigned char menew = me + 1;
unsigned read = l->s.read << 8;
unsigned cmp = (me << 16) + read + me;
unsigned cmpnew = (menew << 16) + read + me;

if (cmpxchg(&l->u, cmp, cmpnew) == cmp) return 0;

return EBUSY;
}

static void rwticket_rdlock(rwticket *l)
{
unsigned me = atomic_xadd(&l->u, (1<<16));
unsigned char val = me >> 16;

while (val != l->s.read) cpu_relax();
l->s.read++;
}

static void rwticket_rdunlock(rwticket *l)
{
atomic_inc(&l->s.write);
}

static int rwticket_rdtrylock(rwticket *l)
{
unsigned me = l->s.users;
unsigned write = l->s.write;
unsigned char menew = me + 1;
unsigned cmp = (me << 16) + (me << 8) + write;
unsigned cmpnew = ((unsigned) menew << 16) + (menew << 8) + write;

if (cmpxchg(&l->u, cmp, cmpnew) == cmp) return 0;

return EBUSY;
}


至此,读写锁的各种设计也介绍完毕,亲,你明白了吗?:)

(全文完)




你可能感兴趣的:(自己动手实现读写锁(read-write lock))