- 使用Python爬虫与自然语言处理技术抓取并分析网页内容
Python爬虫项目
python爬虫自然语言处理javascript数据分析人工智能
1.引言在如今数据驱动的时代,网页爬虫(WebScraping)和自然语言处理(NLP)已成为处理大量网页数据的重要工具。利用Python爬虫抓取网页内容,结合NLP技术进行文本分析和信息抽取,能够从大量网页中提取有价值的信息。无论是新闻文章的情感分析、社交媒体的舆情分析,还是电商网站的商品评论挖掘,这些技术都发挥着至关重要的作用。本文将介绍如何利用Python爬虫与自然语言处理技术抓取并分析网页
- Python 爬虫实战:从新闻网站抓取数据并进行情感分析,揭示舆情趋势
随着信息时代的发展,新闻内容的获取和情感分析变得越来越重要。在日常生活中,新闻不仅影响公众的观点和情感,还能反映出社会的舆情变化。如何从大量新闻中获取有价值的信息,并进行情感分析,为舆情监测、品牌管理、市场预测等提供支持,成为了许多企业和个人的需求。本文将以Python爬虫为基础,展示如何从新闻网站抓取数据,并进行情感分析。我们将重点介绍如何使用爬虫抓取新闻数据、如何分析新闻情感,以及如何根据情感
- 计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
B站计算机毕业设计大学
大数据毕业设计人工智能课程设计知识图谱python大数据深度学习爬虫
温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!信息安全/网络安全大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人介绍资料《Python知识图谱中华古诗
- 计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!信息安全/网络安全大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人介绍资料Python知识图谱中华古诗词
- Python 爬虫实战:解析接口爬取搜狐新闻评论(评论情感极性判断)
Python核芯
Python爬虫实战项目python爬虫开发语言
一、项目概述在信息爆炸的时代,新闻评论成为公众表达意见和情感的重要渠道。搜狐新闻作为国内领先的新闻平台,积累了海量的用户评论数据。本项目旨在通过Python爬虫技术解析搜狐新闻评论接口,高效抓取评论数据,并借助情感分析算法判断评论情感极性,洞察公众舆论倾向,为舆情分析、内容优化等提供数据支撑。二、环境搭建与技术选型(一)Python环境配置安装Python:推荐使用Python3.8+版本,确保兼
- [AI笔记]-LLM中的3种架构:Encoder-Only、Decoder-Only、Encoder-Decoder
Micheal超
AI笔记人工智能笔记架构
一、概述架构描述特点案例Encoder-Only仅包含编码器部分这类模型主要专注输入数据中提取特征或上下文信息,通常不需要生成新内容、只需要理解输入的任务,如:分类(文本分类、情感分析等)、信息抽取、序列标注等。在这种架构中,所有的注意力机制和网络层都集中在编码输入数据上,其输出通常是关于输入的复杂语义表示。谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4Decoder-Only也被称为
- 基于Python的携程景点评价爬虫与情感评分分析
程序员威哥
python爬虫开发语言
一、项目背景携程(Ctrip)是中国最流行的旅游预订平台之一,其景点用户评论包含了大量真实的游客反馈。通过分析评论的情感倾向,可以:为用户提供更可靠的景点推荐辅助景区运营方了解用户口碑构建情感评分系统,为评分失衡提供补充二、项目目标自动化抓取携程指定景点的用户评论清洗与分词评论文本对评论进行情感分析打分分析整体情绪趋势并可视化结果三、技术栈与工具模块工具/库数据爬取requests,re,json
- 【LLaMA 3实战】6、LLaMA 3上下文学习指南:从少样本提示到企业级应用实战
无心水
LLaMA3模型实战专栏llamaLLaMA3实战LLaMa3上下文AI入门程序员的AI开发第一课人工智能AI
一、上下文学习(ICL)的技术本质与LLaMA3突破(一)ICL的核心原理与模型机制上下文学习(In-ContextLearning)的本质是通过提示词激活预训练模型的元学习能力,使模型无需微调即可适应新任务。LLaMA3的ICL架构通过以下机制实现突破:任务抽象:从示例中提取输入输出映射规则,如情感分析中的正负向判断模式模式泛化:将规则迁移到新输入,支持跨领域知识迁移动态适应:实时调整注意力分布
- 数字人多模态交互中的语义理解技术:让虚拟角色真正“理解”用户
CarlowZJ
数字人python
目录前言一、语义理解技术的概念(一)语义理解的定义(二)语义理解的关键技术二、语义理解的代码示例(一)安装依赖(二)语义理解模型(三)结合情感分析(四)完整的多模态语义理解系统三、应用场景(一)虚拟客服(二)教育辅导(三)虚拟直播(四)智能助手四、注意事项(一)上下文管理(二)情感分析(三)多模态融合(四)模型选择(五)性能优化(六)安全性和隐私保护五、总结前言在数字人多模态交互中,语义理解是实现
- 【深度学习解惑】如果用RNN实现情感分析或文本分类,你会如何设计数据输入?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn分类人工智能机器学习神经网络
以下是用RNN实现情感分析/文本分类时数据输入设计的完整技术方案:1.引言与背景介绍情感分析/文本分类是NLP的核心任务,目标是将文本映射到预定义类别(如正面/负面情感)。RNN因其处理序列数据的天然优势成为主流方案。核心挑战在于如何将非结构化的文本数据转换为适合RNN处理的数值化序列输入。2.原理解释文本到向量的转换流程:原始文本分词建立词汇表词索引映射词嵌入层序列向量关键数学表示:词嵌入表示:
- Python爬虫实战:研究TextBlob相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmlTextBlob
1.引言1.1研究背景与意义随着互联网技术的飞速发展,社交媒体已成为人们获取信息和表达观点的重要平台。每天在社交媒体上产生的海量文本数据蕴含着丰富的情感信息和社会舆情,分析这些文本情感倾向,有助于企业了解消费者对产品和服务的评价,政府部门监测社会舆论动态,研究机构探索公众对热点事件的态度。情感分析(SentimentAnalysis)作为自然语言处理的重要分支,旨在通过计算方法识别和提取文本中的主
- 入选 ICML 2025!哈佛医学院等推出全球首个 HIE 领域临床思维图谱模型,神经认知结果预测任务上性能提升 15%
hyperai
在人工智能技术突飞猛进的当下,大型视觉-语言模型(LVLMs)正以惊人的速度重塑多个领域的认知边界。在自然图像与视频分析领域,这类模型依托先进的神经网络架构、海量标注数据集与强大算力支持,已能精准完成物体识别、场景解析等高阶任务。而在自然语言处理领域,LVLMs通过对TB级文本语料的学习,在机器翻译、文本摘要、情感分析等任务上达到专业级水准,其生成的学术摘要甚至能精准提炼医学文献的核心结论。然而当
- 15.5 情感识别准确率86.2%!LanguageMentor实时动态对话系统让学习效率飙升15%
少林码僧
学习langchainllama人工智能语言模型
情感识别准确率86.2%!LanguageMentor实时动态对话系统让学习效率飙升15%LanguageMentorAgent高级对话功能:情感识别与动态调整关键词:情感分析集成、动态难度调节、多模态上下文感知、实时反馈机制、对话状态管理1.情感识别架构设计通过三层处理实现智能对话调节:
- 使用LangChain与Solar进行文本嵌入
Zbb159
langchain
使用LangChain与Solar进行文本嵌入在处理自然语言处理中,文本嵌入是将文本转换为数字向量的一种技术,它使计算机能够理解和处理文本数据。在这篇文章中,我们将探索如何使用LangChain与Solar进行文本嵌入。技术背景介绍文本嵌入可以用于多种自然语言处理任务,例如文本分类、情感分析和语义搜索等。Solar是一种简单易用的嵌入服务,提供了强大的推理能力,可以轻松地将文本转换为嵌入向量。核心
- NLP市场规模将破千千亿,哪些岗位会成为新风口?
duolapig
人工智能
近年来,自然语言处理(NLP)技术在全球范围内掀起了一场“语言革命”。从智能客服到机器翻译,从情感分析到内容生成,NLP正以惊人的速度重塑人类与机器的交互方式。艾媒咨询数据显示,2023年中国NLP市场规模已达660亿元,预计2027年将突破千亿大关。这一数字背后,不仅是技术迭代的加速,更是一场深刻的人才需求变革。在AI大模型浪潮的推动下,新的职业风口正在形成,而这场变革的核心逻辑,是技术与产业融
- Orange3实战教程:文本挖掘---情感分析
err2008
Orange3实战教程数据挖掘深度学习机器学习人工智能自然语言处理神经网络orange3中文版
情感分析预测文本的情感倾向。输入语料库(Corpus):一组文档的集合。输出语料库(Corpus):包含每个文档情感信息的语料库。情感分析为语料库中的每个文档预测情感倾向。该方法使用了来自NLTK的Liu&Hu和Vader情感分析模块,DataScienceLab的多语言情感词典,ArthurJacobs的SentiArt,以及WalterDaelemans等人的LiLaH情感词典。所有方法均基于
- EEG分类-Alpha band power
闪电科创
算法人工智能深度学习EEG脑电信号
在脑电图(EEG)信号处理的背景下,alpha波段功率(AlphaBandPower)是一个非常重要的特征,广泛应用于认知神经科学、临床诊断、情感分析以及脑机接口(BCI)等领域。接下来,我将详细介绍alpha波段功率的定义、特性、计算方法以及在脑电图分析中的应用。1.Alpha波段的定义Alpha波指的是EEG信号中的一个频带,通常定义为8到13赫兹(Hz)的频率范围。在脑电图中,alpha波是
- PyABSA 入门指南:基于深度学习的情感分析工具包
是纯一呀
DeepLearningAINLP深度学习人工智能NLP
在自然语言处理(NLP)领域,情感分析(SentimentAnalysis)一直是热门任务之一。而基于方面的情感分析(Aspect-BasedSentimentAnalysis,ABSA),则是更细粒度的分析方式——不仅判断正负情绪,还识别情绪对象(方面)和具体情感极性(如好/差)。什么是PyABSA?PyABSA(PythonAspect-BasedSentimentAnalysis)是一个专为
- C#与人工智能:使用Cognitive Services进行情感分析
墨瑾轩
一起学学C#【一】c#人工智能flask
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣嘿嘿,亲爱的技术探险家们!今天我们要一起探索C#和人工智能的奇妙世界,看看如何使用微软的CognitiveServices来进行情感分析。准备好了吗?让我们踏上这段智能分析的奇幻之旅!引言:情感分析的魔力♀️在人工智能的魔法世界里,情感分析是一种能够理解文本
- 从代码学习深度学习 - 情感分析及数据集 PyTorch版
飞雪白鹿€
#自然语言处理深度学习pytorch
文章目录前言1.认识数据集:aclImdb基本信息数据结构特点2.解压与读取数据2.1解压文件2.2读取评论与标签3.预处理数据集3.1词元化与构建词汇表3.2分析评论长度3.3截断与填充4.创建数据迭代器5.整合所有步骤总结前言欢迎来到“从代码学习深度学习”系列!今天,我们将深入探讨自然语言处理(NLP)中的一个核心任务:情感分析。随着互联网的普及,从产品评论、社交媒体到论坛讨论,我们每天都在产
- Python爬虫实战:爬取社交媒体评论数据进行情感分析
Python爬虫项目
2025年爬虫实战项目python爬虫媒体开发语言chromec++
引言在现代互联网社会,社交媒体已成为人们表达情感、分享看法以及传播信息的重要平台。Twitter、Facebook、Instagram等社交媒体每天都产生着海量的用户评论和互动,这些内容蕴含着丰富的情感信息。因此,如何从社交媒体中抓取评论数据,并对这些评论进行情感分析,已经成为了数据分析、舆情监测、市场调研等领域的热门应用。情感分析(SentimentAnalysis)是一种自然语言处理技术,通过
- Python 爬虫实战:华尔街见闻精选文章爬取(反反爬 + 投资情绪分析)
Python核芯
Python爬虫实战项目python爬虫开发语言
一、环境配置与工具选择1.1技术栈选型本次实战采用以下技术组合:核心框架:Playwright(浏览器自动化)、Requests(HTTP请求)、BeautifulSoup(HTML解析)反反爬模块:fake-useragent(随机UA)、proxypool(代理池)、playwright-stealth(反检测)数据分析:Pandas(数据处理)、SnowNLP(情感分析)、WordCloud
- 自然语言处理之文本分类:Transformer:文本分类数据集分析
zhubeibei168
自然语言处理自然语言处理分类transformer数据挖掘人工智能支持向量机
自然语言处理之文本分类:Transformer:文本分类数据集分析自然语言处理基础NLP概述自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,专注于使计算机能够理解、解释和生成人类语言。NLP技术广泛应用于文本分类、情感分析、机器翻译、问答系统、语音识别等场景。其核心挑战在于理解语言的复杂性和多义性,以及处理大
- 循环神经网络RNN
Xyz_Overlord
rnn深度学习人工智能
一、循环神经网络概念以及应用场景1.概念处理序列的一种神经网络计算模型。2.序列数据数据是根据时间步生成的,前后数据有关联关系,数据可以是数字、文字序列等等。3.应用场景自然语言处理(NLP)、时间序列预测、语音识别、音乐生成......4.自然语言处理概述主要是通过计算机算法来理解自然语言。NLP涵盖了从文本到语音、从语音到文本的各个方面,它涉及多种技术,包括语法分析、语义理解、情感分析、机器翻
- 从理论到实践:情感分析如何提升量化价值投资收益率?
量化价值投资入门到精通
ai
从理论到实践:情感分析如何提升量化价值投资收益率?关键词:情感分析、量化价值投资、自然语言处理、投资组合优化、收益率提升、金融文本分析、量化策略摘要:本文系统解析情感分析技术在量化价值投资中的理论基础与实践路径。首先构建情感分析与价值投资的理论关联模型,揭示金融文本情感数据对资产定价的影响机制。其次通过数学建模和算法实现,演示如何将情感得分嵌入经典量化模型(如CAPM、Black-Litterma
- R情感分析:解码文本中的情感
Morpheon
Rr语言开发语言
基于之前关于文本聚类和文本模型的博客,我们现在可以深入探讨一个经典主题-情感分析。情感分析通过计算方式识别和分类文本中的情感,帮助理解公众意见或消费者反馈。什么是情感分析?情感分析确定文本背后的情感基调,将其分类为积极、消极或中性。它被广泛用于社交媒体监控和理解消费者需求。为什么使用情感分析?公众意见:评估对话题或品牌的情绪。消费者洞察:快速识别客户反应(例如,Expedia加拿大的商业案例)。挑
- 「Happy LLM」机器与人类沟通的桥梁——NLP
OvO_ll
自然语言处理人工智能LLMNLP
如果说,编程语言是人类与机器“单方”交流的语言,那么NLP就是机器与人类进行“双向”交流的桥梁了。本章节我们会聊到:什么是NLP?NLP的预处理是怎样实现的?什么是NLP?NLP(自然语言处理)是人工智能的一个分支,专注于让计算机理解、生成和运用人类语言。它的核心是通过算法处理文本或语音数据,实现翻译、问答、情感分析等功能。其本质上是将人类语言转化为机器可处理的结构化数据(如语义解析),同时将机器
- Python爬虫教程:抓取社交媒体内容(以Facebook和Instagram为例)
Python爬虫项目
2025年爬虫实战项目python爬虫媒体新浪微博开发语言测试工具facebook
引言社交媒体平台如Facebook、Instagram、Twitter等,已经成为了现代社会的主要信息源。无论是品牌营销、情感分析、趋势监测,还是社会研究,社交媒体上的公开内容都为各种数据分析提供了宝贵的资源。然而,社交媒体平台通常对数据抓取有一定的限制,出于隐私保护和反作弊的考虑,很多平台的公开数据都受到了一定的限制。尽管如此,仍然有一些方法可以合法且高效地抓取公开的社交媒体内容。在本篇文章中,
- 王阳明代数
花间流风
明明德数域王船山熵群与王阳明代数情感分析矩阵几何学
和悦空间的王阳明代数和晏殊几何学和悦空间是情感分析中的核心概念,它提供了描述意气实体过程的数学框架。王阳明代数和晏殊几何学是和悦空间中的重要结构,它们在情感分析、社会关系力学、气质砥砺学,人生意气场和社群成员魅力场中有着广泛的应用。本文将基于琴语言的离散事件仿真系统和推荐系统数据挖掘,介绍和悦空间的王阳明代数和晏殊几何学的基本概念、应用和问题,并探讨它们在模拟动力系统仿真(烛火流形学习引擎)中的重
- SpringBoot项目接入DeepSeek指南:从零开始实现AI能力整合
cyc&阿灿
springboot人工智能后端
一、DeepSeek简介与应用场景DeepSeek是国内领先的人工智能大模型平台,提供强大的自然语言处理能力。通过API接入,开发者可以快速为应用添加以下AI功能:智能问答系统:构建知识库驱动的问答机器人内容生成:自动生成文章、摘要、广告文案等代码辅助:代码补全、解释、翻译和优化文本处理:情感分析、关键词提取、文本分类等二、准备工作2.1获取DeepSeekAPI密钥访问DeepSeek官网注册开
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,