- DeepSeek 部署中的常见问题及解决方案
tonngw
后端
技术文章大纲:DeepSeek部署中的常见问题及解决方案引言简要介绍DeepSeek及其应用场景,说明部署过程中可能遇到的挑战。环境配置问题硬件兼容性问题:GPU型号、驱动版本不匹配的解决方案。依赖库冲突:Python版本、CUDA/cuDNN不兼容的排查方法。虚拟环境配置:Anaconda或Docker环境的最佳实践。模型加载与初始化问题预训练模型下载失败:网络代理设置、手动下载替代方案。显存不
- Flutter 稳定版支持 Windows,开发者还学的动吗?
以下文章来源于code小生,关注每日干货及时送达整理|郭露责编|张红月出品|CSDN(ID:CSDNnews)Flutter是由谷歌开发的开源移动UI框架,可快速在不同平台上构建高质量原生用户界面。Flutter支持现有的所有代码,在世界各地受到越来越多开发者的追捧。到目前为止,全球已发布了近50万个使用Flutter的应用程序,其中包括来自字节跳动等大型公司的应用程序,以及谷歌三十个团队的应用程
- DeepFM算法原理及应用场景
DeepFM(DeepFactorizationMachine)是一种结合了因子分解机(FactorizationMachines,FM)和深度神经网络(DNN)的混合模型,主要用于处理高维稀疏数据(如推荐系统中的点击率预测)。其核心思想是同时捕捉低阶(线性)和高阶(非线性)特征交互。1.算法原理模型结构如下:FM部分:负责捕捉低阶特征交互(如一阶和二阶特征组合)。一阶项:线性特征权重。二阶项:通
- OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl
村北头的码农
OpenCVopencvdnn人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中超分辨率(SuperResolution)模块的一个内部实现类。它属于dnn_superres模块,用于加载和运行基于深度学习的图像超分辨率模型。这个类是OpenCV中用于执行深度学习超分辨率推理的主要类。你可以用它来加载预训练的超分辨率模型(如ED
- Linux|ubuntu22.04安装CUDA最新完整教程
文章目录一、安装前准备工作查看GPU和型号查看GCC版本*下载gcc12*检查驱动二、安装CUDAToolkit*安装驱动三、安装后的工作必要操作推荐的操作开启守护进程模式删除本地下载安装包四、验证删除CUDA常见问题及解决方案还需要安装cuDNN吗?nvcc:Nosuchfileordirectory“errorwhileloadingsharedlibraries::cannotopensha
- Ubuntu22.04安装CUDA12.1 cuDNN8.9.7 pytorch2.2.2
快乐的笨笨
linux
当前安装的电脑配置:电脑名称:暗影精灵5系统名称:Ubuntu22.04.4LTS操作系统类型:64位内存:8.0Gib处理器:Intel®Core™
[email protected]显卡:NVIDIACorporationTU117M[GeForceGTX1650Mobile/Max-Q]MesaI...安装前准备:需要安装对应的NVIDIA驱动程序、配置CUDA依赖环境g++gccm
- 推荐文章:探索深度学习的不确定性边界 —— SDE-Net 开源项目解析
史多苹Thomas
推荐文章:探索深度学习的不确定性边界——SDE-Net开源项目解析SDE-NetCodeforpaper:SDE-Net:EquippingDeepNeuralnetworkwithUncertaintyEstimates项目地址:https://gitcode.com/gh_mirrors/sd/SDE-Net在当今的人工智能领域,深度神经网络(DNN)已经成为推动技术创新的基石。然而,其预测的
- equine在神经网络中建立量化不确定性
struggle2025
神经网络人工智能深度学习
一、软件介绍文末提供程序和源码下载众所周知,用于监督标记问题的深度神经网络(DNN)可以在各种学习任务中产生准确的结果。但是,当准确性是唯一目标时,DNN经常会做出过于自信的预测,并且无论测试数据是否属于任何已知标签,它们也总是进行标签预测。EQUINEwascreatedtosimplifytwokindsofuncertaintyquantificationforsupervisedlabel
- 理解不同层的表示(layer representations)
科学禅道
高维表示人工智能深度学习
在机器学习和深度学习领域,特别是在处理音频和自然语言处理(NLP)任务时,"层的表示"(layerrepresentations)通常是指神经网络不同层在处理输入数据时生成的特征或嵌入。这些表示捕获了输入数据的不同层次的信息。1.层的表示(layerrepresentations)为了更好地理解这一概念,我们可以从以下几个方面进行解释:1.深度神经网络结构深度神经网络(DNN)通常由多个层组成,每
- 深度学习计算机视觉开源系统OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置【详细、可运行】
nomoremorphine
深度学习计算机视觉开源
OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置OpenMMLab简介优势:一、Windows/Linux下环境配置(以mmsegmentationv1.2.2(最新版)为例)0.确认安装版本信息1)确认电脑显卡版本2)确认mmcv对应版本3)确认版本1.安装CUDA和cuDNN2.创建conda环境,下载pytorch3.安装mmcv4.安装MMS
- Pytorch血泪安装史好吗(GPU版本+cuda12.1+python3.9.13)
宇宙最强袋鼠
pytorchpython人工智能
1.安装cuda首先看下自己电脑是CPU还是GPU,看自己电脑对应的cuda版本看右下角英伟达标识,点击组件,我的cuda版本是12.3,但最后发现安12.1比较好2.安装12.1cuda版本对应的cudnn前两步可以看参考:Pytorch的安装,有点繁琐但是很详细,保姆级教程不信你安装不成功(Cuda+Cudnn+Anaconda+Pytorch)_pytorch安装-CSDN博客3.anaco
- torch-gpu版本 anaconda配置教程
GXYGGYXG
python
教程Pytorch的GPU版本安装,在安装anaconda的前提下安装pytorch_pytorch-gpu-CSDN博客版本对应PyTorch中torch、torchvision、torchaudio、torchtext版本对应关系_torch2.0.1对应的torchvision-CSDN博客cuda下载地址CUDAToolkitArchive|NVIDIADevelopercudacudnn
- 服务器安装指南
星码
服务器使用服务器运维
服务器安装指南一、安装系统二、磁盘挂载2.1磁盘分区2.2磁盘格式化2.3磁盘挂载三、显卡驱动安装(容易bug)3.1参考目录3.2常见错误3.3正确安装步骤四、Cuda安装五、显卡压力测试六、Cudnn安装七、Conda安装八、用户添加与删除九、关闭图形界面十、其他问题一、安装系统制作ubuntu18.04的启动盘二、磁盘挂载磁盘挂载主要是把硬盘分区后挂载在某个目录下,之后存储在这个目录下的东西
- 智能志愿辅助填报系统数据库设计
ctrl_7
python
项目地址:https://gitee.com/Sosdnnd/xlswk一、项目背景与数据库需求随着高考志愿填报的个性化需求日益增强,我们开发了一款面向全国考生的智能志愿辅助填报系统,目标是基于用户成绩、兴趣、职业倾向、地域偏好等因素,借助AI模型与数据分析,为考生提供个性化的志愿推荐方案。数据库作为系统核心,需要满足以下特性:1.结构清晰,模块对应2.支持大数据分析、智能推荐、实时导出3.易扩展
- 非root用户在服务器(linux-Ubuntu16.04)上安装cuda和cudnn,tensorflow-gpu1.13.1
码小花
模型测试环境搭建
1.准备工作(下载CUDA10.0和cudnn安装包)查看tensorflow和CUDA,cudnn的版本的对应关系,从而选择合适的版本进行下载下载CUDA10.0安装包,点击官网进行下载,根据服务器的具体情况选择对应的版本,如下图所示下载完毕后得到安装包cuda_10.0.130_410.48_linux.run下载cudnn,选择CUDA10.0对应的版本(需要注册登录nvidia账号),点击
- 非 root 用户安装 cuDNN 并配置 TensorFlow 使用 GPU
为非root用户安装cuDNN并配置TensorFlow使用GPU(以CUDA11.5为例)背景说明在科研服务器或非root权限环境下,用户往往无法通过apt或yum安装CUDA/cuDNN。本文以CUDA11.5和cuDNN8.3.3为例,演示如何手动下载并配置cuDNN,使TensorFlow成功识别GPU并启用加速。第一步:确认已安装CUDAnvcc--version示例输出:Cudacom
- vitis dpu kernel编译和docker环境搭建
寒听雪落
linux
一,Vitis-AI简介1,Vitis-AI概述Vitis-AI在边缘计算设备的AI全栈部署框架中扮演了编译器端与后端的角色,接收前端DNN(DeepNeuralNetwork)框架训练后的网络参数IR(IntermediateRepresentation),并将其优化后编译并传递给后端。后端DNNDK(DeepNeuralNetworkDevelopmentKit)为Edge终端提供了驱动和AP
- Datawhale 2025年2月组队学习- 推荐系统教程FunRec #Task3
dxnb22
Datawhale学习笔记人工智能推荐算法
第二章基于向量的召回1.item2vec未完待续……2.youtubeDnn3.经典双塔模型
- 【Triton 教程】triton_language.arange
Triton是一种用于并行编程的语言和编译器。它旨在提供一个基于Python的编程环境,以高效编写自定义DNN计算内核,并能够在现代GPU硬件上以最大吞吐量运行。更多Triton中文文档可访问→https://triton.hyper.ai/triton.language.arange(start,end)返回半开区间[start,end)内的连续值。end-start必须小于等于TRITON_M
- pytorch2.6安装
AoDeLuo
软件安装深度学习pytorch
文章目录cuda:cuda_11.8.0_522.06_windowscudnn:cudnn-windows-x86_64-8.6.0.163_cuda11-archivecondacreate-npytorch2.6python=3.10pipinstalltorch==2.6.0+cu118torchvisiontorchaudio--index-urlhttps://download.pyt
- win10安装wsl2(ubuntu20.04)并安装 TensorRT-8.6.1.6、cuda_11.6、cudnn
狄龙疤
wslwsl2win10tensorrtcudacudnnubuntu
参考博客:1.CUDA】如何在windows上安装Ollama3+openwebui(docker+WSL2+ubuntu+nvidia-container):https://blog.csdn.net/smileyan9/article/details/1403916672.在Windows10上安装WSL2:https://download.csdn.net/blog/column/10991
- 【GPU】使用 pytorch 检测 CUDA 安装是否成功
comedate
Taichi图形学深度学习Python实用源码pytorch人工智能python
使用pytorch检测CUDA安装是否成功importtorchimportosos.environ["CUDA_VISIBLE_DEVICES"]="0"print(torch.cuda.device_count())print(torch.cuda.is_available())print(torch.backends.cudnn.is_available())print(torch.cuda
- Python OpenCV 4.10 库详解
yz123lucky
pythonopencv开发语言
PythonOpenCV4.10库详解文档核心模块覆盖:Core模块:基本数据结构、矩阵操作、数学运算ImgProc模块:图像处理的核心功能,包括颜色转换、几何变换、滤波、边缘检测VideoIO模块:视频和摄像头操作HighGUI模块:用户界面功能,窗口管理、事件处理Features2D模块:特征检测和匹配(SIFT、ORB等)ObjDetect模块:目标检测算法DNN模块:深度学习模型集成Vid
- caffe中Makefile.config详解
《一夜飘零》
##Refertohttp://caffe.berkeleyvision.org/installation.html#Contributionssimplifyingandimprovingourbuildsystemarewelcome!#cuDNNaccelerationswitch(uncommenttobuildwithcuDNN).#USE_CUDNN:=1"CuDNN是NVIDIA专门
- 基于OpenCV和深度学习实现图像风格迁移
E-An居士
opencv深度学习人工智能风格迁移
文章目录引言一、准备工作二、代码实现解析1.读取和显示原始图像2.图像预处理3.加载和运行风格迁移模型4.处理输出结果三、效果展示四、扩展应用五、总结引言图像风格迁移是计算机视觉中一个非常有趣的应用,它可以将一幅图像的内容与另一幅图像的艺术风格相结合。今天我们将介绍如何使用OpenCV的dnn模块加载预训练的深度学习模型,快速实现图像风格迁移效果。一、准备工作首先确保你已经安装了OpenCV库:p
- 信息隐藏|MBRS:Enhancing Robustness of DNN-based Watermarking by Mini-Batch of Real and Simulated JPEG
csq7
dnn人工智能神经网络
文章来源MM'21:Proceedingsofthe29thACMInternationalConferenceonMultimedia提出问题:传统的编码器-噪声层-解码器不能很好的确保JPEG压缩的鲁棒性,JPEG是非差分(不可微)的且是图像处理不可避免的曹组。解决问题:提出利用Mini-BatchofRealandSimulatedJPEGcompression(MBRS)来增强JPEG鲁棒
- Windows下编译带CUDA 11.2的TensorFlow 2.4.1(Python3.9.1,cuDNN 8.1.0,兼容性3.5 - 8.6,附编译结果下载)
瑞凤玉子烧
与Windows死磕到底的日常tensorflowwindowscudagpumkl
基本参照我的这篇文章:《Windows下编译带CUDA11.1(Update1)的TensorFlow2.4(RC0)(Python3.9.0,cuDNN8.0.4,兼容性3.5-8.6,附编译结果下载)》,有些地方有所改动,重新组织一下步骤。环境准备1.内存要求在8个并行任务下(默认并行数为CPU线程数),应有不小于10G的内存,否则会产生编译器堆空间不足的错误。2.Python&Pip首先Py
- 【Triton 教程】triton_language.arange
Triton是一种用于并行编程的语言和编译器。它旨在提供一个基于Python的编程环境,以高效编写自定义DNN计算内核,并能够在现代GPU硬件上以最大吞吐量运行。更多Triton中文文档可访问→https://triton.hyper.ai/triton.language.arange(start,end)返回半开区间[start,end)内的连续值。end-start必须小于等于TRITON_M
- 【Triton 教程】triton_language.num_programs
Triton是一种用于并行编程的语言和编译器。它旨在提供一个基于Python的编程环境,以高效编写自定义DNN计算内核,并能够在现代GPU硬件上以最大吞吐量运行。更多Triton中文文档可访问→https://triton.hyper.ai/triton.language.num_programs(axis)返回沿着指定axis启动的程序实例的数量。参数:axis(int)-3D启动网格的轴。必须
- tiny_dnn_test250101
aw344
dnn算法人工智能
改进版三版250305:增加保存模型下次提取模型以及参数,直接推理选择Y(继续)训练……并再次保存训练模型以及参数的部分:#include#include#include//C++17文件系统检查#include"tiny_dnn/tiny_dnn.h"usingnamespacetiny_dnn;usingnamespacetiny_dnn::activation;#pragmawarning(
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比