A - 棋盘问题 POJ - 1321(DFS,八皇后)

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1
Sample Output
2
1

思路:定义dfs中row意思为放在的第row行,cnt意思是放了cnt个棋子,类似于动态规划的状态定义,搜索中有了明确的状态定义(动态规划中是DP数组各维的意义,DFS中是各个参数的意义)后,就可以写类似转台转移方程的递归向深函数了,体现在代码中就是循环搜整个棋盘找到未标记并且可放的点(因为每一层的标记点互不影响,所以要回溯),实现dfs(r + 1,cnt + )---->下一行,下一个。

#include 
#include 

using namespace std;

int n,k;
int ans = 0;
int vis[10];
char maze[10][10];

int check(int x,int y)
{
    if(maze[x][y] == '#' && vis[y] == 0)
    {
        return 1;
    }
    return 0;
}

void dfs(int row,int cnt)//一行一行的来
{
意思是行数超过n - 1就剪枝,加了也不影响、
//    if(row > n)//这个要不要加嘞??
//    {
//        return;//看来还是不要加的为好
//    }
    if(cnt == k)
    {
        ans++;
        return;
    }
    //就是少了下面这个循环才错掉的。
//    for(int r=row;r<=n-(k-cnt);r++)//这个循环也可以,但我不太明白
    for(int r = row; r < n; r ++)
        for(int i = 0; i < n; i++)
        {
            if(check(r,i))//坐标对应二维数组的下标
            {
                //对应x,y的话总是弄得自己好晕。。。
                vis[i] = 1;//回溯,保证各个层次之间的遍历不会相互影响
                dfs(r + 1,cnt + 1);
                vis[i] = 0;//我靠,忘记改下标了
            }
        }
}

int main()
{
    while(~scanf("%d%d",&n,&k) && n != -1 && k != -1)
    {
        ans = 0;//我去,又忘记初始化了。
        memset(vis,0,sizeof(vis));
        for(int i = 0; i < n; i++)
        {
            scanf("%s",maze[i]);//scanf("%c")毒瘤
        }
        dfs(0,0);
        printf("%d\n",ans);
    }
}

转载于:https://www.cnblogs.com/tomjobs/p/10612577.html

你可能感兴趣的:(A - 棋盘问题 POJ - 1321(DFS,八皇后))