- Apache MXNet:灵活高效的深度学习库
零 度°
python深度学习apachemxnet
ApacheMXNet是一个开源的深度学习框架,适用于灵活的研究原型设计和生产。它提供了一个混合前端,可以无缝地在Gluon(动态图)和Symbolic(静态图)模式之间转换,以提供灵活性和速度。MXNet支持多种语言绑定,包括Python、Scala、Julia、Clojure、Java、C++、R和Perl,并且拥有一个活跃的工具和库生态系统,可以扩展MXNet的功能,支持计算机视觉、自然语言
- Apache MXNet 深度学习框架教程
娄妃元Kacey
ApacheMXNet深度学习框架教程mxnetLightweight,Portable,FlexibleDistributed/MobileDeepLearningwithDynamic,Mutation-awareDataflowDepScheduler;forPython,R,Julia,Scala,Go,Javascriptandmore项目地址:https://gitcode.com/g
- Ubuntu为julia安装深度学习框架MXNet(支持CUDA和OPenCV编译)
盼小辉丶
julia深度学习cmakelinuxmxnetjulialanguage深度学习
Ubuntu为julia安装深度学习框架MXNet(支持CUDA和OPenCV编译)环境介绍与注意事项下载源文件安装依赖编译环境配置安装MXNet测试后记环境介绍与注意事项Ubuntu18.04julia1.5.3CUDA10.1(为了GPU支持,需要安装CUDA和cudnn,可以参考博客,若CUDA版本不同,参考此网站下载合适的MXNet版本)安装MXNet的julia绑定,经过多次测试,并不能
- MXNet深度学习框架:高效与灵活性的结合
原机小子
深度学习mxnet人工智能
标题:MXNet深度学习框架:高效与灵活性的结合MXNet是一个由Apache软件基金会支持的开源深度学习框架,以其高效性能和灵活性而闻名。它最初由亚马逊团队开发,并于2015年开源,迅速成为深度学习领域的一个重要工具。MXNet支持多种编程语言,包括Python、Java、Scala、R、C++等,能够运行在CPU、GPU和云平台上,满足不同场景下的需求。1.MXNet的核心特性MXNet的主要
- 【单层神经网络】基于MXNet的线性回归实现(底层实现)
辰尘_星启
线性回归mxnet机器学习人工智能深度学习神经网络python
写在前面刚开始先从普通的寻优算法开始,熟悉一下学习训练过程下面将使用梯度下降法寻优,但这大概只能是局部最优,它并不是一个十分优秀的寻优算法整体流程生成训练数据集(实际工程中,需要从实际对象身上采集数据)确定模型及其参数(输入输出个数、阶次,偏置等)确定学习方式(损失函数、优化算法,学习率,训练次数,终止条件等)读取数据集(不同的读取方式会影响最终的训练效果)训练模型完整程序及注释fromIPyth
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- Task01:线性回归;Softmax与分类模型、多层感知机
恰人陈
pytorch机器学习深度学习神经网络
一、mxnet相关函数用法mxnet.nd用法对标numpy库(1)nd.concatfrommxnetimportndnd.concat(X,Y,dim=0)nd.concat(X,Y,dim=1)X,Y为两个矩阵nd.concat为连接矩阵,dim表示连接的维度,若原来两个矩阵为(4,3),dim=0就表示新生成矩阵为(8,3)dim=1表示新生成矩阵为(4,6)(2)y+=xy=y+x这样的
- 【单层神经网络】基于MXNet库简化实现线性回归
辰尘_星启
神经网络mxnet线性回归
写在前面同最开始的两篇文章完整程序及注释'''导入使用的库'''#基本frommxnetimportautograd,nd,gluon#模型、网络frommxnet.gluonimportnnfrommxnetimportinit#学习frommxnet.gluonimportlossasgloss#数据集frommxnet.gluonimportdataasgdata'''生成测试数据集'''#
- 线性回归基础学习
Remoa
人工智能线性回归优化gluonmxnetloss
线性回归基础学习目录:理论知识样例代码测试参考文献一、理论知识线性回归思维导图NDArray:MXNet中存储和变换数据的主要工具,提供GPU计算和自动求梯度等功能线性回归可以用神经网络图表示,也可以用矢量计算表示在Gluon中,data模块提供了有关数据处理的工具,nn模块定义了大量神经网络的层,loss模块定义了各种损失函数在MXNet的init模块(initializer)提供了模型参数化的
- 《动手学深度学习》(PyTorch版)
chaser&upper
深度学习pytorch深度学习python
《动手学深度学习》PyTorch版前言简介面向人群食用方法方法一方法二方法三目录原书地址引用阅读指南前言读书啦!!!本项目将《动手学深度学习》原书中MXNet代码实现改为PyTorch实现。原书作者:阿斯顿·张、李沐、扎卡里C.立顿、亚历山大J.斯莫拉以及其他社区贡献者,GitHub地址:https://github.com/d2l-ai/d2l-zh此书的中英版本存在一些不同,针对此书英文版的P
- 使用onnxruntime-web 运行yolov8-nano推理
CHEN_RUI_2200
机器学习YOLO
ONNX(OpenNeuralNetworkExchange)模型具有以下两个特点促成了我们可以使用onnxruntime-web直接在web端上运行推理模型,为了让这个推理更直观,我选择了试验下yolov8识别预览图片:1.跨平台兼容性ONNX是一种开放的格式,可以在不同的深度学习框架之间共享模型,如PyTorch、TensorFlow、MXNet和Caffe2。这使得用户可以在一个框架中训练模
- Python机器学习之XGBoost从入门到实战(基本理论说明)
雪域枫蓝
PythonAtificialIntelligence机器学习python分布式
Xgboost从基础到实战XGBoost:eXtremeGradientBoosting*应用机器学习领域的一个强有力的工具*GradientBootingMachines(GBM)的优化表现,快速有效—深盟分布式机器学习开源平台(DistributedmachinelearningCommunity,DMLC)的分支—DMLC也开源流行的深度学习库mxnet*GBM:Machine:机器学习模型
- 如何快速在Windows 10 + Anaconda 3 中使用Mxnet及gluon
qianchess
mxnet使用mxnetwin10anacondagluon人工智能
如何快速在Windows10+Anaconda3中使用Mxnet及gluon网络上Mxnet的安装以及使用方法很多,自从其作者之一李沐推出了基于Mxnet的深度学习课程之后,我也尝试着去使用了一下Mxnet。首先第一步就是在自己的系统中安装Mxnet及其相关组建。现在的Mxnet常常会跟其虚拟环境Gluon结合在一起,所以下文就一起阐述一下,顺便记录一下自己踩的坑。注意本文的大部分内容都可以在官网
- 深度学习主流开源框架:Caffe、TensorFlow、Pytorch、Theano、Keras、MXNet、Chainer
seasonsyy
深度学习小知识深度学习开源框架pytorch
2.6深度学习主流开源框架表2.1深度学习主流框架参数对比框架关键词总结框架关键词基本数据结构(都是高维数组)Caffe“在工业中应用较为广泛”,“编译安装麻烦一点”BlobTensorFlow“安装简单pip”TensorPytorch“定位:快速实验研究”,“简单”,“灵活”TensorTheanoד用于处理大规模神经网络的训练”,“不支持移动设备”,“不能应用于工业环境”,“编译复杂模型时
- onnx基础
whyte王
python
初次编辑时间:2024/2/7;最后编辑时间:2024/2/12定义:ONNX(OpenNeuralNetworkExchange)是一种开放式的文件格式,用于存储训练好的机器学习模型。它使得不同的人工智能框架(如PyTorch、MXNet、Tensorflow)可以采用相同格式存储模型数据并交互。Basic当我们加载了一个ONNX之后,我们获得的就是一个ModelProto,它包含了一些版本信息
- MxNet源码解析(1) KVStore,pslite源码解析
Junr_0926
1.前言从毕业开始工作已经两个多月,这期间相当一部分的时间都用在了对MxNet的学习上,而在MxNet的众多部分中,又是pslite这一部分接触最多。因此,今天将我一直以来的学习过程中的心得和收获总结在这里,也为以后对MxNet的继续学习做一个铺垫2.MxNet构成MxNet作为一个深度学习框架,它最大的特点应该是分布式训练的支持了。从初次接触MxNet到现在的两个多月里,我认为MxNet主要有以
- 人脸识别数据集整理
想努力的人
人脸识别深度学习人工智能计算机视觉
转自:人脸识别数据集整理-陈晓涛-博客园insightface提供整理了mtcnn裁剪112x112,mxnet二进制方式保存的数据集https://github.com/deepinsight/insightface/wiki/Dataset-Zoo人脸识别训练数据集:CASIA-Webface(10Kids/0.5Mimages)CASIAWebFaceDataset是一个大规模人脸数据集,主
- 深度学习-随机梯度下降
白云如幻
PyTorch深度学习机器学习算法人工智能
在训练过程中使用随机梯度下降,但没有解释它为什么起作用。为了澄清这一点,将继续更详细地说明随机梯度下降(stochasticgradientdescent)。%matplotlibinlineimportmathfrommxnetimportnp,npxfromd2limportmxnetasd2lnpx.set_np()随机梯度更新在深度学习中,目标函数通常是训练数据集中每个样本的损失函数的平均
- 动手学深度学习(二)——正则化(从零开始)
SnailTyan
文章作者:Tyan博客:noahsnail.com|CSDN|注:本文为李沐大神的《动手学深度学习》的课程笔记!高维线性回归使用线性函数$y=0.05+\sum_{i=1}^p0.01x_i+\text{noise}$生成数据样本,噪音服从均值0和标准差为0.01的正态分布。#导入mxnetimportrandomimportmxnetasmx#设置随机种子random.seed(2)mx.ran
- 2023-2024深度学习框架之争——选pytorch还是tensorflow?
NCHU-Net
人工智能人工智能深度学习pytorchtensorflow
深度学习是人工智能领域的一个重要分支,它利用多层神经网络来模拟人类的学习和推理能力,解决各种复杂的问题,如图像识别、自然语言处理、语音识别、推荐系统等。深度学习框架是一种软件工具,它提供了构建、训练、测试和部署深度学习模型的便利,使得开发者和研究者可以更高效地进行深度学习的开发和应用。目前,市场上有许多不同的深度学习框架,如PyTorch、TensorFlow、Keras、MXNet、Caffe2
- mxnet版本与numpy,requests等都不兼容问题
Bian~
numpymxnetpython
简介跟着李沐学AI时遇到的mxnet环境问题。问题使用pipinstallmxnet时会重新安装相匹配的numpy和requests,而这新安装的这两个版本不满足d2l所需的版本。然后报错:ERROR:pip'sdependencyresolverdoesnotcurrentlytakeintoaccountallthepackagesthatareinstalled.Thisbehaviouri
- 初学AI-动手安装mxnet
小白天天向上
mxnet人工智能深度学习
最近看到网络上介绍的《动手学深度学习》,感觉是一本理论结合实际的好书。参考链接如下:《动手学深度学习》—动手学深度学习2.0.0documentation心痒之下开始动手安装,没想到花费自己两天实际搞明白如何安装。以下记录自己的心路历程,哈哈。书上介绍的第一步安装Minicoda,其实也可以安装Anacoda,不影响后面的MXNET安装。书上没有介绍MXNET的运行环境,实际上MXNET只能运行在
- Mxnet导出onnx模型
上单之光
模型部署mxnet人工智能深度学习
Mxnet导出onnx模型requirementsmxnet==1.9.1python3.8+onnxsim导出模型importosimportmxnetasmximportnumpyasnpimportonnxfromonnximportcheckerfrommxnet.onnximportexport_modelfrommxnet.gluon.model_zooimportvisionfrom
- mxnet和numpy版本对应
Edison/
pythonmxnet
关于安装mxnet与numpy版本冲突解决方法下载anaconda32019.7python3.7版本mxnet1.6.0版本numpy1.16.x成功运行
- 安装mxnet详细版
江江酱₍ᐢ..ᐢ₎♡
mxnet人工智能深度学习pythonpipcondaipython
一、mxnet简介MXNet是一个开源的深度学习框架,由亚马逊公司发起并维护。它支持多种编程语言,包括Python、C++、R、Scala等,可以在CPU、GPU和分布式环境下运行。MXNet提供了丰富的神经网络层和优化算法,可以用于各种深度学习任务,如图像分类、目标检测、语音识别等。同时,MXNet还具有高效、灵活、易用等特点,受到了广泛的关注和应用。二、安装过程及遇到的困难步骤一:直接Win+
- 【避免踩坑+报错】Python mxnet包成功安装指南
_普
mxnet人工智能深度学习python经验分享
一.确保已经安装Anaconda二.打开root环境控制台,执行【mxnet】包相关安装指令。1.创建python3.7.0环境condacreate-nnamepython=3.7.0【测试mxnet在python3.7.0x以上版本使用大概率会报错,这里使用低版本python环境】ps:如果在这一步创建环境报错可以考虑卸载【Anaconda】重装2.激活环境condaactivatename三
- [动手学深度学习-PyTorch版]-8.4计算性能-多GPU计算
蒸饺与白茶
8.4多GPU计算注:相对于本章的前面几节,我们实际中更可能遇到本节所讨论的情况:多GPU计算。原书将MXNet的多GPU计算分成了8.4和8.5两节,但我们将关于PyTorch的多GPU计算统一放在本节讨论。需要注意的是,这里我们谈论的是单主机多GPU计算而不是分布式计算。如果对分布式计算感兴趣可以参考PyTorch官方文档。本节中我们将展示如何使用多块GPU计算,例如,使用多块GPU训练同一个
- 模型优化论文笔记6----MobileNets采用深度可分离卷积在权衡精度的同时减小模型尺寸和时延
JaJaJaJaaaa
模型优化卷积神经网络深度学习
《MobileNets:EfficientConvolutionalNeuralNetworksforMobileVisionApplications》论文地址:https://arxiv.org/abs/1704.04861MXNet框架代码:https://github.com/miraclewkf/mobilenet-MXNet1.主要思想介绍了两种简单的全局超参数用以平衡时延和准确率,构建
- 打破硬件壁垒:TVM 助力 AI技术跨平台部署
程序边界
人工智能
文章目录《TVM编译器原理与实践》编辑推荐内容简介作者简介目录前言/序言获取方式随着人工智能(ArtificialIntelligence,AI)在全世界信息产业中的广泛应用,深度学习模型已经成为推动AI技术革命的关键。TensorFlow、PyTorch、MXNet、Caffe等深度学习模型已经在服务器级GPU上取得了显著的成果。然而,大多数现有的系统框架只针对小范围的服务器级GPU进行过优化,
- ART-Adversarial Robustness Toolbox检测AI模型及对抗攻击的工具
Rnan-prince
网络安全人工智能python
一、工具简介AdversarialRobustnessToolbox是IBM研究团队开源的用于检测模型及对抗攻击的工具箱,为开发人员加强AI模型被误导的防御性,让AI系统变得更加安全,ART支持所有流行的机器学习框架(TensorFlow,Keras,PyTorch,MXNet,scikit-learn,XGBoost,LightGBM,CatBoost,GPy等),所有数据类型(图像,表格,音频
- 多线程编程之理财
周凡杨
java多线程生产者消费者理财
现实生活中,我们一边工作,一边消费,正常情况下会把多余的钱存起来,比如存到余额宝,还可以多挣点钱,现在就有这个情况:我每月可以发工资20000万元 (暂定每月的1号),每月消费5000(租房+生活费)元(暂定每月的1号),其中租金是大头占90%,交房租的方式可以选择(一月一交,两月一交、三月一交),理财:1万元存余额宝一天可以赚1元钱,
- [Zookeeper学习笔记之三]Zookeeper会话超时机制
bit1129
zookeeper
首先,会话超时是由Zookeeper服务端通知客户端会话已经超时,客户端不能自行决定会话已经超时,不过客户端可以通过调用Zookeeper.close()主动的发起会话结束请求,如下的代码输出内容
Created /zoo-739160015
CONNECTEDCONNECTED
.............CONNECTEDCONNECTED
CONNECTEDCLOSEDCLOSED
- SecureCRT快捷键
daizj
secureCRT快捷键
ctrl + a : 移动光标到行首ctrl + e :移动光标到行尾crtl + b: 光标前移1个字符crtl + f: 光标后移1个字符crtl + h : 删除光标之前的一个字符ctrl + d :删除光标之后的一个字符crtl + k :删除光标到行尾所有字符crtl + u : 删除光标至行首所有字符crtl + w: 删除光标至行首
- Java 子类与父类这间的转换
周凡杨
java 父类与子类的转换
最近同事调的一个服务报错,查看后是日期之间转换出的问题。代码里是把 java.sql.Date 类型的对象 强制转换为 java.sql.Timestamp 类型的对象。报java.lang.ClassCastException。
代码:
- 可视化swing界面编辑
朱辉辉33
eclipseswing
今天发现了一个WindowBuilder插件,功能好强大,啊哈哈,从此告别手动编辑swing界面代码,直接像VB那样编辑界面,代码会自动生成。
首先在Eclipse中点击help,选择Install New Software,然后在Work with中输入WindowBui
- web报表工具FineReport常用函数的用法总结(文本函数)
老A不折腾
finereportweb报表工具报表软件java报表
文本函数
CHAR
CHAR(number):根据指定数字返回对应的字符。CHAR函数可将计算机其他类型的数字代码转换为字符。
Number:用于指定字符的数字,介于1Number:用于指定字符的数字,介于165535之间(包括1和65535)。
示例:
CHAR(88)等于“X”。
CHAR(45)等于“-”。
CODE
CODE(text):计算文本串中第一个字
- mysql安装出错
林鹤霄
mysql安装
[root@localhost ~]# rpm -ivh MySQL-server-5.5.24-1.linux2.6.x86_64.rpm Preparing... #####################
- linux下编译libuv
aigo
libuv
下载最新版本的libuv源码,解压后执行:
./autogen.sh
这时会提醒找不到automake命令,通过一下命令执行安装(redhat系用yum,Debian系用apt-get):
# yum -y install automake
# yum -y install libtool
如果提示错误:make: *** No targe
- 中国行政区数据及三级联动菜单
alxw4616
近期做项目需要三级联动菜单,上网查了半天竟然没有发现一个能直接用的!
呵呵,都要自己填数据....我了个去这东西麻烦就麻烦的数据上.
哎,自己没办法动手写吧.
现将这些数据共享出了,以方便大家.嗯,代码也可以直接使用
文件说明
lib\area.sql -- 县及县以上行政区划分代码(截止2013年8月31日)来源:国家统计局 发布时间:2014-01-17 15:0
- 哈夫曼加密文件
百合不是茶
哈夫曼压缩哈夫曼加密二叉树
在上一篇介绍过哈夫曼编码的基础知识,下面就直接介绍使用哈夫曼编码怎么来做文件加密或者压缩与解压的软件,对于新手来是有点难度的,主要还是要理清楚步骤;
加密步骤:
1,统计文件中字节出现的次数,作为权值
2,创建节点和哈夫曼树
3,得到每个子节点01串
4,使用哈夫曼编码表示每个字节
- JDK1.5 Cyclicbarrier实例
bijian1013
javathreadjava多线程Cyclicbarrier
CyclicBarrier类
一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环的 barrier。
CyclicBarrier支持一个可选的 Runnable 命令,
- 九项重要的职业规划
bijian1013
工作学习
一. 学习的步伐不停止 古人说,活到老,学到老。终身学习应该是您的座右铭。 世界在不断变化,每个人都在寻找各自的事业途径。 您只有保证了足够的技能储
- 【Java范型四】范型方法
bit1129
java
范型参数不仅仅可以用于类型的声明上,例如
package com.tom.lang.generics;
import java.util.List;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value =
- 【Hadoop十三】HDFS Java API基本操作
bit1129
hadoop
package com.examples.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoo
- ua实现split字符串分隔
ronin47
lua split
LUA并不象其它许多"大而全"的语言那样,包括很多功能,比如网络通讯、图形界面等。但是LUA可以很容易地被扩展:由宿主语言(通常是C或 C++)提供这些功能,LUA可以使用它们,就像是本来就内置的功能一样。LUA只包括一个精简的核心和最基本的库。这使得LUA体积小、启动速度快,从 而适合嵌入在别的程序里。因此在lua中并没有其他语言那样多的系统函数。习惯了其他语言的字符串分割函
- java-从先序遍历和中序遍历重建二叉树
bylijinnan
java
public class BuildTreePreOrderInOrder {
/**
* Build Binary Tree from PreOrder and InOrder
* _______7______
/ \
__10__ ___2
/ \ /
4
- openfire开发指南《连接和登陆》
开窍的石头
openfire开发指南smack
第一步
官网下载smack.jar包
下载地址:http://www.igniterealtime.org/downloads/index.jsp#smack
第二步
把smack里边的jar导入你新建的java项目中
开始编写smack连接openfire代码
p
- [移动通讯]手机后盖应该按需要能够随时开启
comsci
移动
看到新的手机,很多由金属材质做的外壳,内存和闪存容量越来越大,CPU速度越来越快,对于这些改进,我们非常高兴,也非常欢迎
但是,对于手机的新设计,有几点我们也要注意
第一:手机的后盖应该能够被用户自行取下来,手机的电池的可更换性应该是必须保留的设计,
- 20款国外知名的php开源cms系统
cuiyadll
cms
内容管理系统,简称CMS,是一种简易的发布和管理新闻的程序。用户可以在后端管理系统中发布,编辑和删除文章,即使您不需要懂得HTML和其他脚本语言,这就是CMS的优点。
在这里我决定介绍20款目前国外市面上最流行的开源的PHP内容管理系统,以便没有PHP知识的读者也可以通过国外内容管理系统建立自己的网站。
1. Wordpress
WordPress的是一个功能强大且易于使用的内容管
- Java生成全局唯一标识符
darrenzhu
javauuiduniqueidentifierid
How to generate a globally unique identifier in Java
http://stackoverflow.com/questions/21536572/generate-unique-id-in-java-to-label-groups-of-related-entries-in-a-log
http://stackoverflow
- php安装模块检测是否已安装过, 使用的SQL语句
dcj3sjt126com
sql
SHOW [FULL] TABLES [FROM db_name] [LIKE 'pattern']
SHOW TABLES列举了给定数据库中的非TEMPORARY表。您也可以使用mysqlshow db_name命令得到此清单。
本命令也列举数据库中的其它视图。支持FULL修改符,这样SHOW FULL TABLES就可以显示第二个输出列。对于一个表,第二列的值为BASE T
- 5天学会一种 web 开发框架
dcj3sjt126com
Web框架framework
web framework层出不穷,特别是ruby/python,各有10+个,php/java也是一大堆 根据我自己的经验写了一个to do list,按照这个清单,一条一条的学习,事半功倍,很快就能掌握 一共25条,即便很磨蹭,2小时也能搞定一条,25*2=50。只需要50小时就能掌握任意一种web框架
各类web框架大同小异:现代web开发框架的6大元素,把握主线,就不会迷路
建议把本文
- Gson使用三(Map集合的处理,一对多处理)
eksliang
jsongsonGson mapGson 集合处理
转载请出自出处:http://eksliang.iteye.com/blog/2175532 一、概述
Map保存的是键值对的形式,Json的格式也是键值对的,所以正常情况下,map跟json之间的转换应当是理所当然的事情。 二、Map参考实例
package com.ickes.json;
import java.lang.refl
- cordova实现“再点击一次退出”效果
gundumw100
android
基本的写法如下:
document.addEventListener("deviceready", onDeviceReady, false);
function onDeviceReady() {
//navigator.splashscreen.hide();
document.addEventListener("b
- openldap configuration leaning note
iwindyforest
configuration
hostname // to display the computer name
hostname <changed name> // to change
go to: /etc/sysconfig/network, add/modify HOSTNAME=NEWNAME to change permenately
dont forget to change /etc/hosts
- Nullability and Objective-C
啸笑天
Objective-C
https://developer.apple.com/swift/blog/?id=25
http://www.cocoachina.com/ios/20150601/11989.html
http://blog.csdn.net/zhangao0086/article/details/44409913
http://blog.sunnyxx
- jsp中实现参数隐藏的两种方法
macroli
JavaScriptjsp
在一个JSP页面有一个链接,//确定是一个链接?点击弹出一个页面,需要传给这个页面一些参数。//正常的方法是设置弹出页面的src="***.do?p1=aaa&p2=bbb&p3=ccc"//确定目标URL是Action来处理?但是这样会在页面上看到传过来的参数,可能会不安全。要求实现src="***.do",参数通过其他方法传!//////
- Bootstrap A标签关闭modal并打开新的链接解决方案
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
Bootstrap里面的js modal控件使用起来很方便,关闭也很简单。只需添加标签 data-dismiss="modal" 即可。
可是偏偏有时候需要a标签既要关闭modal,有要打开新的链接,尝试多种方法未果。只好使用原始js来控制。
<a href="#/group-buy" class="btn bt
- 二维数组在Java和C中的区别
流淚的芥末
javac二维数组数组
Java代码:
public class test03 {
public static void main(String[] args) {
int[][] a = {{1},{2,3},{4,5,6}};
System.out.println(a[0][1]);
}
}
运行结果:
Exception in thread "mai
- systemctl命令用法
wmlJava
linuxsystemctl
对比表,以 apache / httpd 为例 任务 旧指令 新指令 使某服务自动启动 chkconfig --level 3 httpd on systemctl enable httpd.service 使某服务不自动启动 chkconfig --level 3 httpd off systemctl disable httpd.service 检查服务状态 service h