- 李宏毅2025《机器学习》第四讲-Transformer架构的演进
Transformer架构的演进与替代方案:从RNN到Mamba的技术思辨Transformer作为当前AI领域的标准架构,其设计并非凭空而来,也并非没有缺点。本次讨论的核心便是:新兴的架构,如MAMA,是如何针对Transformer的弱点进行改进,并试图提供一个更优的解决方案的。要理解架构的演进,我们必须首先明确一个核心原则:每一种神经网络架构,都有其存在的技术理由。CNN(卷积神经网络):为
- 条件概率:不确定性决策的基石
大千AI助手
人工智能Python#OTHER决策树算法机器学习人工智能条件概率概率论
条件概率是概率论中的核心概念,用于描述在已知某一事件发生的条件下,另一事件发生的概率。它量化了事件之间的关联性,是贝叶斯推理、统计建模和机器学习的基础。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、定义与公式设(A)和(B)是两个随机事件,且(P(B)>0):条件概率(P(A\midB))表示
- 人工智能动画展示人类的特征
AGI大模型与大数据研究院
AI大模型应用开发实战javapythonjavascriptkotlingolang架构人工智能
人工智能,动画,人类特征,情感识别,行为模拟,机器学习,深度学习,自然语言处理1.背景介绍人工智能(AI)技术近年来发展迅速,已渗透到生活的方方面面。从智能语音助手到自动驾驶汽车,AI正在改变着我们的世界。然而,尽管AI技术取得了令人瞩目的成就,但它仍然难以完全模拟人类的复杂行为和特征。人类的特征是多方面的,包括情感、认知、社交和创造力等。这些特征是人类区别于其他生物的重要标志,也是人类社会文明发
- 《支持向量机(SVM)在医疗领域的变革性应用》
CodeJourney.
支持向量机算法机器学习
在医疗科技日新月异的今天,先进的数据分析与机器学习技术正逐渐成为提升诊疗水平、助力医学研究的关键力量。支持向量机(SVM),凭借其独特的优势,在医疗这片复杂且对精准度要求极高的领域崭露头角,带来诸多令人瞩目的应用成果。一、疾病诊断:癌症早期筛查的“火眼金睛”癌症,作为全球健康的“头号杀手”,早期诊断对提升患者生存率意义非凡。在乳腺癌筛查领域,SVM发挥着重要作用。医疗科研人员收集大量乳腺组织的影像
- 机器学习20-线性网络思考
坐吃山猪
机器学习机器学习人工智能线性网络
机器学习20-线性网络思考针对线性网络的基础问题,使用基础示例进行解释1-核心知识点1-线性模型家族的线性回归和逻辑回归分别是什么,线性模型家族还有没有其他的模型线性模型家族是一系列基于线性假设的统计模型,它们假设因变量和自变量之间存在线性关系。线性模型家族中的两个最常见模型是线性回归和逻辑回归。线性回归(LinearRegression):线性回归是一种用于预测连续因变量的模型。它假设因变量yy
- 机器学习18-强化学习RLHF
坐吃山猪
机器学习机器学习人工智能
机器学习18-强化学习RLHF1-什么是RLHFRLHF(ReinforcementLearningfromHumanFeedback)即基于人类反馈的强化学习算法,以下是详细介绍:基本原理RLHF是一种结合了强化学习和人类反馈的机器学习方法。传统的强化学习通常依赖于预定义的奖励函数来指导智能体的学习,而RLHF则通过引入人类的反馈来替代或补充传统的奖励函数。在训练过程中,人类会对智能体的行为或输
- 机器学习19-Transformer和AlexNet思考
坐吃山猪
机器学习机器学习transformer人工智能
Transformer和AlexNet思考关于Transformer和AlexNet发展的一些思考1-核心知识点Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?AlexNet的主要核心思路是什么,为什么表现那么好?现在有什么比AlexNet更优秀的算法2-思路整理1-Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?Word2Vec的作用Word2
- 机器学习21-线性网络思考
坐吃山猪
机器学习机器学习人工智能线性网络
机器学习21-线性网络思考针对线性网络的发展问题,进行补充学习1-核心知识点1-传统机器学习针对线性分类算法求解的方式有哪些?请详细列举不同的算法对应的损失函数和计算思路在传统机器学习中,线性分类算法是一种非常重要的方法,用于将数据划分为不同的类别。以下是几种常见的线性分类算法,包括它们的损失函数和计算思路:1.感知机(Perceptron)损失函数感知机的损失函数是基于误分类点的,其目标是最小化
- Spring AI 第二讲 之 Chat Model API 第五节HuggingFace Chat
HuggingFaceInferenceEndpoints允许您在云中部署和提供机器学习模型,并通过API对其进行访问。开始使用有关HuggingFaceInferenceEndpoints的更多详细信息,请访问此处。前提条件添加spring-ai-huggingface依赖关系:org.springframework.aispring-ai-huggingface获取HuggingFaceAPI
- Python设置国内镜像教程
wh3933
python开发语言
####引言Python是一种广泛使用的高级编程语言,用于各种编程任务,从简单的脚本到复杂的机器学习算法。在安装Python包时,通常需要从Python包索引(PyPI)下载。由于网络原因,直接从PyPI下载可能速度较慢,因此,使用国内的镜像源可以显著提高下载速度。本文将详细介绍如何在Python中设置国内镜像。####文章目的本篇文章旨在指导用户如何将Python的包管理工具`pip`的默认源切
- 机器学习宝典——第6章
爱看烟花的码农
机器学习人工智能
第6章:聚类算法(Clustering)你好,同学!欢迎来到无监督学习的世界。与监督学习不同,这里的我们没有“标准答案”(标签),我们的目标是在数据中发现隐藏的、内在的结构。聚类算法就是实现这一目标的核心工具,它试图将数据集中的样本划分为若干个不相交的子集,我们称之为“簇”(cluster)。本章我们将深入探讨三种最具代表性的聚类算法:K-均值(K-Means)、层次聚类(Hierarchical
- 结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
刘海东刘海东
人工智能机器学习算法
结构型智能科技的关键可行性——信息型智能向结构型智能的转变1.信息型智能科技概述1.1传统计算机科技的信息型继承者1.2信息型智能环境1.3信息型智能主体1.4机器学习创造的智能1.5信息型智能科技的缺陷2.结构型智能科技概述2.1传统计算机科技向生命结构的发展2.2结构型智能科技的环境2.3结构型智能科技创造的机器生命2.4结构型智能科技的科学性3.结构型智能科技的关键可行性——信息型智能向结构
- 多模态大模型:技术原理与实战 看清GPT的进化史和创新点
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战看清GPT的进化史和创新点1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习方法1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2GPT系列模型的发展1.3.3多模态大模型的兴起2.核心概念与联系2.1
- 【机器学习|学习笔记】组合特征(Feature Combinations)是提升模型性能、挖掘特征交互信息、增强非线性表达能力的有效手段。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记人工智能神经网络深度学习
【机器学习|学习笔记】组合特征(FeatureCombinations)是提升模型性能、挖掘特征交互信息、增强非线性表达能力的有效手段。【机器学习|学习笔记】组合特征(FeatureCombinations)是提升模型性能、挖掘特征交互信息、增强非线性表达能力的有效手段。文章目录【机器学习|学习笔记】组合特征(FeatureCombinations)是提升模型性能、挖掘特征交互信息、增强非线性表达
- R语言的软件开发工具
纪霁然
包罗万象golang开发语言后端
R语言的软件开发工具引言R语言因其强大的数据分析能力和丰富的统计包,自发布以来便广受欢迎。随着数据科学和分析的迅猛发展,R语言也逐渐成为数据分析、机器学习和统计建模领域的重要工具。为了更好地利用R语言进行软件开发,许多软件开发工具和环境应运而生。本文将深入探讨R语言的主要开发工具,帮助开发者更高效地进行数据处理和分析。1.R和RStudio基础R语言本身是一个用于统计计算和图形绘制的编程语言,而R
- 结合创新idea:机器学习+运筹优化=CCF高端局
Ai多利
机器学习人工智能
2024深度学习发论文&模型涨点之——机器学习+运筹优化机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并改进其性能,而无需进行明确的编程。运筹优化,也称为运筹学或运营管理,是应用数学的一个分支,它使用数学模型和算法来支持复杂决策过程的制定。机器学习与运筹优化的结合是一个前沿且活跃的研究领域,它们相互补充,为解决复杂问题提供了新的思路和方法。小编整理了一些机器学习+运筹优化【论文+代码
- Jupyter安装指南及Python配置
CodeWG
pythonjupyteridePython
Jupyter是一个非常流行的交互式计算环境,广泛用于数据分析、机器学习和科学计算等领域。本文将详细介绍如何安装Jupyter并配置Python环境。步骤1:安装Python首先,我们需要安装Python。请按照以下步骤进行操作:打开Python官方网站(https://www.python.org)并下载适用于您操作系统的最新版本的Python。运行下载的安装程序,并按照向导的指示进行安装。在安
- Python scikit-learn 【机器学习库】全面讲解
让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》scikit-learn(简称sklearn)是Python最流行的机器学习库之一,提供简单高效的数据挖掘和数据分析工具。它基于NumPy、SciPy和Matplotlib构建,广泛应用于工业界和学术界。核心优势统一API设计:所有模型使用一致的接口(fit()、predict()、score())丰富的算法:覆
- 供应链风险管理:AI预测潜在风险
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
供应链风险管理,AI预测,机器学习,深度学习,自然语言处理,风险评估,供应链可视化1.背景介绍在当今全球化经济体系中,供应链的复杂性和脆弱性日益凸显。供应链风险是指任何可能对供应链正常运行造成负面影响的事件或因素。这些风险可能来自自然灾害、政治动荡、经济波动、技术故障、供应商违约等方面。一旦供应链风险爆发,可能会导致生产中断、产品短缺、成本飙升、品牌形象受损等严重后果。传统供应链风险管理方法主要依
- 供应链风险管理:AI如何预测供应链风险
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
供应链风险管理,AI预测,机器学习,深度学习,自然语言处理,时间序列分析,风险评估1.背景介绍在当今全球化经济体系中,供应链风险已成为企业面临的重大挑战。供应链的复杂性和不可预测性使得企业更容易受到各种风险的影响,例如自然灾害、政治动荡、经济波动、疫情爆发等。这些风险可能导致供应中断、成本增加、交付延迟,甚至损害企业声誉。传统供应链风险管理方法主要依赖于经验和专家判断,缺乏数据驱动和预测能力。随着
- 2024大模型秋招LLM相关面试题整理
AGI大模型资料分享官
人工智能深度学习机器学习自然语言处理语言模型easyui
0一些基础术语大模型:一般指1亿以上参数的模型,但是这个标准一直在升级,目前万亿参数以上的模型也有了。大语言模型(LargeLanguageModel,LLM)是针对语言的大模型。175B、60B、540B等:这些一般指参数的个数,B是Billion/十亿的意思,175B是1750亿参数,这是ChatGPT大约的参数规模。强化学习:(ReinforcementLearning)一种机器学习的方法,
- 【python实用小脚本-127】基于 Python 的 Google 图片爬取工具:实现高效图片数据收集
Kyln.Wu
Pythonpython开发语言
引言在数据科学、机器学习和多媒体应用中,图片数据的收集是一个常见且重要的任务。Google图片是一个丰富的图片资源库,能够为各种项目提供大量的图片数据。本文将介绍一个基于Python的Google图片爬取工具,它能够自动化地从Google图片搜索结果中下载图片。该工具主要利用了Python的selenium、BeautifulSoup、urllib和argparse库,结合了网页自动化和数据解析技
- 【Python爬虫进阶】从网页抓取到数据清洗与存储——完整实战教程
Python爬虫项目
python爬虫开发语言javascript自然语言处理selenium
1.为什么网页抓取后需要数据清洗?在实际项目中,抓取的原始数据往往是杂乱的、不完整的、格式各异的。如果不清洗,直接用来建模、分析,会导致:脏数据干扰(如乱码、重复数据)异常值影响结果(如薪资异常高)格式不统一(比如地点有中文名和英文名混杂)所以,抓取数据后,必须进行系统清洗与标准化,才能用于后续的:数据分析可视化展示机器学习建模2.项目概览:从抓取到存储的完整流程本项目流程如下:确定抓取目标(某招
- 验证码破解的可能与不可能:用Python处理图片验证码的原理与限制
程序员威哥
python开发语言
前言验证码(CAPTCHA)是当前互联网防护机制中的重要组成部分,用于区分真人与自动程序。近年来,随着自动化技术发展,验证码破解成为自动化测试、爬虫及安全研究领域的热点。然而,从技术层面来看,验证码破解既有可行之处,也存在根本限制。本文将结合Python图像处理与机器学习技术,深度剖析图片验证码破解的原理、实践与瓶颈。一、验证码的分类及破解难点1.验证码类型字符型验证码纯数字、字母或混合,最常见。
- flask部署机器学习_如何开发端到端机器学习项目并使用Flask将其部署到Heroku
cumichun6193
大数据python机器学习人工智能深度学习
flask部署机器学习There'sonequestionIalwaysgetaskedregardingDataScience:关于数据科学,我经常被问到一个问题:WhatisthebestwaytomasterDataScience?Whatwillgetmehired?掌握数据科学的最佳方法是什么?什么会雇用我?Myanswerremainsconstant:Thereisnoalterna
- 人工智能赋能气象气候:从数据智能到预测创新的融合之路
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:气象气候与AI的“天然耦合”气象与气候系统是典型的复杂、多尺度、强非线性的自然系统,其建模、分析与预测依赖庞大观测数据和高性能计算资源。传统方法以数值天气预报(NWP)与物理建模为核心,虽然取得重要成就,但也面临计算代价大、精度不足、长期预测偏差大等瓶颈。与此同时,人工智能(AI),尤其是以深度学习为代表的机器学习方法,近年来在图像识别、自
- 【机器学习|学习笔记】类别特征(Categorical Features)处理方法,附代码。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记神经网络人工智能深度学习
【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。文章目录【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。前言✅为什么要处理类别特征?原因1:大多数模型不能处理字符串原因2:避免“错误的顺序假设”原因3:方便模型泛化与特征交互✅
- Python中使用Graphviz绘制决策树图解
黃昱儒
本文还有配套的精品资源,点击获取简介:Graphviz是一款用于数据可视化和算法流程展示的图形绘制软件,特别适用于Python中绘制决策树和其他图形类型。本安装包包含Graphviz安装程序和配置指南,以及如何在Python中利用pydot库等第三方库进行图形绘制的详细步骤。通过配置环境变量和利用DOT语言,用户可以将决策树模型转换为可视化图形,加深对机器学习模型的理解和调试。1.Graphviz
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- 大数据开发高频面试题:Spark与MapReduce解析
被招网约司机的盯上了好几天实习了六个月,到期被通知不能转正。外包裁员让我去友商我该去吗?offer比较华为状态码浏览器插件嵌入式项目推荐2019秋招总结+云从语音算法面经+银行群面面经科大讯飞语音算法面经语音算法美团一面已挂科大讯飞智能语音方向值得去吗?语音算法oc科大讯飞语音算法二面荣耀一面语音算法面经,已挂荣耀_语音算法工程一面科大讯飞语音一面凉经8.18携程机器学习(语音方向)一面【vivo
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在