- 深度 Qlearning:在直播推荐系统中的应用
AGI通用人工智能之禅
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
深度Q-learning:在直播推荐系统中的应用关键词:深度Q-learning,强化学习,直播推荐系统,个性化推荐1.背景介绍1.1问题的由来随着互联网技术的飞速发展,直播平台如雨后春笋般涌现。面对海量的直播内容,用户很难快速找到自己感兴趣的内容。因此,个性化推荐系统在直播平台中扮演着越来越重要的角色。1.2研究现状目前,主流的个性化推荐算法包括协同过滤、基于内容的推荐等。这些方法在一定程度上缓
- OpenAI o1 的价值意义及“强化学习的Scaling Law” & Kimi创始人杨植麟最新分享:关于OpenAI o1新范式的深度思考
光剑书架上的书
ChatGPT大数据AI人工智能计算人工智能算法机器学习
OpenAIo1的价值意义及“强化学习的ScalingLaw”蹭下热度谈谈OpenAIo1的价值意义及RL的Scalinglaw。一、OpenAIo1是大模型的巨大进步我觉得OpenAIo1是自GPT4发布以来,基座大模型最大的进展,逻辑推理能力提升的效果和方法比预想的要好,GPT4o和o1是发展大模型不同的方向,但是o1这个方向更根本,重要性也比GPT4o这种方向要重要得多,原因下面会分析。为什
- 探索未来,大规模分布式深度强化学习——深入解析IMPALA架构
汤萌妮Margaret
探索未来,大规模分布式深度强化学习——深入解析IMPALA架构scalable_agent项目地址:https://gitcode.com/gh_mirrors/sc/scalable_agent在当今的人工智能研究前沿,深度强化学习(DRL)因其在复杂任务中的卓越表现而备受瞩目。本文要介绍的是一个开源于GitHub的重量级项目:“ScalableDistributedDeep-RLwithImp
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 反思的魔力:用语言的力量强化AI智能体
步子哥
人工智能机器学习
在浩瀚的代码海洋中,AI智能体就像初出茅庐的航海家,渴望探索未知的宝藏。然而,面对复杂的编程任务,他们常常迷失方向。今天,就让我们跟随“反思”的灯塔,见证AI智能体如何通过语言的力量,点亮智慧的明灯,成为代码世界的征服者!智能体的困境近年来,大型语言模型(LLM)在与外部环境(如游戏、编译器、API)交互的领域中大放异彩,化身为目标驱动的智能体。然而,传统的强化学习方法如同一位严苛的训练师,需要大
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 大模型的实践应用29-大语言模型的RLHF(人类反馈强化学习)的具体应用与原理介绍
微学AI
大模型的实践应用语言模型人工智能自然语言处理RLHF
大家好,我是微学AI,今天给大家介绍一下大模型的实践应用29-大语言模型的RLHF(人类反馈强化学习)的具体应用与原理介绍。在当今人工智能发展的浪潮中,大语言模型(LargeLanguageModels,LLMs)凭借其强大的语言理解和生成能力,成为了研究与应用的热点。而在这股浪潮中,一种名为“基于人类反馈的强化学习”的方法脱颖而出,为大语言模型的优化和应用开辟了新的路径。本文首部分将深入浅出地介
- 坚定理想信念,锤炼党性修养
知涵知
理想信念是中国共产党人的政治灵魂,是共产党人精神上的“钙”,没有理想信念,理想信念不坚定,精神上就会“缺钙”,就会得“软骨病”。党员干部只有坚定理想信念,强化责任担当,锤炼道德操守,提升党性修养,才能切实做到为党分忧、为国尽责、为民奉献。坚定理想信念,就要强化学习精神、自律精神、担当精神。思想理论上的坚定清醒是政治上坚定的前提,党员干部要始终把理论学习作为政治责任、事业需要和精神追求,积极参加组织
- python 物理引擎_在 Gym 上构建会动的人工智障1(python)
weixin_39542608
python物理引擎
背景说明作者最近使用processing的一个重要目标就是为学生的编程学习设计具体的应用场景,最近突然发现有一个包已经提供了部分功能,所以探索一下。这个包就是我们今天的主人公:Gym。Gym是用于开发和比较强化学习算法的python包,但是我们也完全可以使用它来作为我们自己程序的应用背景,并提供可视化。简单的说,就是我们使用自己写的小程序,而不是强化学习算法,来尝试完成其中的任务,并把完成任务的过
- 强化学习(二)----- 马尔可夫决策过程MDP
Duckie-duckie
机器学习数据数据分析数据挖掘机器学习算法
1.马尔可夫模型的几类子模型大家应该还记得马尔科夫链(MarkovChain),了解机器学习的也都知道隐马尔可夫模型(HiddenMarkovModel,HMM)。它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关。马尔可夫决策过程(MarkovDecisionProcess,MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作
- Python强化学习,基于gym的马尔可夫决策过程MDP,动态规划求解,体现序贯决策
baozouxiaoxian
pythongymqlearningpython强化学习mdp动态规划求解马尔科夫决策过程
决策的过程分为单阶段和多阶段的。单阶段决策也就是单次决策,这个很简单。而序贯决策指按时间序列的发生,按顺序连续不断地作出决策,即多阶段决策,决策是分前后顺序的。序贯决策是前一阶段决策方案的选择,会影响到后一阶段决策方案的选择,后一阶段决策方案的选择是取决于前一阶段决策方案的结果。强化学习过程中最典型的例子就是非线性二级摆系统,有4个关键值,小车受力,受力方向,摆速度,摆角,每个状态下都需要决策车的
- 强化学习分类
0penuel0
Model-free:Qlearning,Sarsa,PolicyGradientsModel-based:能通过想象来预判断接下来将要发生的所有情况.然后选择这些想象情况中最好的那种基于概率:PolicyGradients基于价值:Qlearning,Sarsa两者融合:Actor-Critic回合更新:Monte-carlolearning,基础版的policygradients单步更新:Ql
- 7. 深度强化学习:智能体的学习与决策
Network_Engineer
机器学习学习机器学习深度学习神经网络python算法
引言深度强化学习结合了强化学习与深度学习的优势,通过智能体与环境的交互,使得智能体能够学习最优的决策策略。深度强化学习在自动驾驶、游戏AI、机器人控制等领域表现出色,推动了人工智能的快速发展。本篇博文将深入探讨深度强化学习的基本框架、经典算法(如DQN、策略梯度法),以及其在实际应用中的成功案例。1.强化学习的基本框架强化学习是机器学习的一个分支,专注于智能体在与环境的交互过程中,学习如何通过最大
- 深度强化学习之DQN-深度学习与强化学习的成功结合
CristianoC
目录概念深度学习与强化学习结合的问题DQN解决结合出现问题的办法DQN算法流程总结一、概念原因:在普通的Q-Learning中,当状态和动作空间是离散且维数不高的时候可以使用Q-Table来存储每个状态动作对应的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实。一是因为当问题复杂后状态太多,所需内存太大;二是在这么大的表格中查询对应的状态也是一件很耗时的事情。image通常的做法是把
- 一对一包教会脑电教学服务
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★最近有不少人留言“脑电该怎么学习?想强化学习脑电某个内容版块可以吗?...”,也有小伙伴联系我们,咨询脑电相关内容能
- 基于时序差分的无模型强化学习:Q-learning 算法详解
晓shuo
算法强化学习
目录一、无模型强化学习中的时序差分方法与Q-learning1.1时序差分法1.2Q-learning算法状态-动作值函数(Q函数)Q-learning的更新公式Q-learning算法流程Q-learning的特点1.3总结一、无模型强化学习中的时序差分方法与Q-learning 动态规划算法依赖于已知的马尔可夫决策过程(MDP),在环境的状态转移概率和奖励函数完全明确的情况下,智能体无需与环
- (18-1)基于深度强化学习的股票交易模型:项目介绍+准备环境
码农三叔
强化学习从入门到实践人工智能深度学习股票交易模型DRLDoubleDQNDuelingDQN
在本章的这个项目中,实现了一个用于股票交易的DRL模型,旨在展示DRL在金融领域的潜力,提供其在股票交易中应用的实际例子。希望通过本章内容的学习,能够为那些对金融与机器学习交叉领域感兴趣的人士提供有益的参考。1.1项目介绍在金融市场中,股票交易是一项充满挑战的任务,需要在高度波动和复杂的市场环境中做出快速且精准的决策。传统的交易策略通常依赖于经验、基本面分析或技术分析。然而,这些方法往往无法在快速
- 深度学习算法——Transformer
fw菜菜
数学建模深度学习transformer人工智能数学建模pythonpytorch
参考教材:动手学pytorch一、模型介绍Transformer模型完全基于注意力机制,没有任何卷积层或循环神经网络层。尽管Transformer最初是应用于在文本数据上的序列到序列学习,但现在已经推广到各种现代的深度学习中,例如语言、视觉、语音和强化学习领域。Transformer作为编码器-解码器架构的一个实例,其整体架构图在下图中展示。正如所见到的,Trans‐former是由编码器和解码器
- sumo carla 自动驾驶联合仿真 安装 配置 教程 开发 驾驶模拟 强化学习
jZhUeZPQZw
自动驾驶人工智能机器学习
sumocarla自动驾驶联合仿真安装配置教程开发驾驶模拟强化学习轨迹预测轨迹规划标题:基于SUMO和CARLA的自动驾驶联合仿真系统安装与配置:教程与开发探索摘要:随着自动驾驶技术的迅猛发展,仿真环境在自动驾驶系统的评估、训练和验证中扮演着重要的角色。本文介绍了基于SUMO(SimulationofUrbanMObility)和CARLA(CarLearningtoAct)的自动驾驶联合仿真系统
- Python知识点:如何使用Python实现强化学习机器人
杰哥在此
Python系列python机器人开发语言编程面试
实现一个强化学习机器人涉及多个步骤,包括定义环境、状态和动作,选择适当的强化学习算法,并训练模型。下面是一个简单的例子,使用Python和经典的Q-learning算法来实现一个强化学习机器人,目标是通过OpenAIGym提供的FrozenLake环境训练机器人学会如何在冰面上移动以找到目标。1.安装必要的库首先,需要安装OpenAIGym和Numpy。你可以使用以下命令安装它们:pipinsta
- 机器学习在医学中的应用
听忆.
机器学习人工智能
边走、边悟迟早会好机器学习在医学中的应用是一个广泛且复杂的领域,涵盖了从基础研究到临床应用的多个方面。以下是一个万字总结的结构性思路,分章节深入探讨不同应用场景、技术方法、挑战与未来展望。1.引言背景与发展:介绍医学领域的数字化转型以及机器学习的兴起,探讨其在医学中的潜力。机器学习的基本概念:简要介绍机器学习的基本原理、分类(监督学习、非监督学习、强化学习等)和常用算法(如神经网络、支持向量机、随
- 人工智能&机器学习&深度学习
AA杂货铺111
机器学习:一切通过优化方法挖掘数据中规律的学科。深度学习:一切运用了神经网络作为参数结构进行优化的机器学习算法。强化学习:不仅能利用现有数据,还可以通过对环境的探索获得新数据,并利用新数据循环往复地更新迭代现有模型的机器学习算法。学习是为了更好地对环境进行探索,而探索是为了获取数据进行更好的学习。深度强化学习:一切运用了神经网络作为参数结构进行优化的强化学习算法。人工智能定义与分类人工智能(Art
- 学习日志6
Simon#0209
学习
关于量子强化学习:论文Variational_Quantum_Circuits_for_Deep_Reinforcement_Learning:变分量子电路在深度强化学习中的应用论文主要内容:将经典深度强化学习算法(如经验重放和目标网络)重塑为变分量子电路的表示摘要当前最先进的机器学习方法基于经典冯·诺伊曼计算架构,并在许多工业和学术领域得到广泛应用。随着量子计算的发展,研究人员和技术巨头们试图为
- 【科技前沿】用深度强化学习优化电网,让电力调度更聪明!
风清扬雨
人工智能人工智能python智能电网深度强化学习
Hey小伙伴们,今天我要跟大家分享一个超级酷炫的技术应用——深度强化学习在电网优化中的典型案例!如果你对机器学习感兴趣,或是正寻找如何用AI技术解决实际问题的方法,这篇分享绝对不容错过!✨开场白大家好,我是你们的技术小助手!今天我们要聊的是如何利用深度强化学习(DRL)来优化电网的调度,让电力系统变得更智能、更高效。引入话题想象一下,如果你能够通过一种先进的技术手段,自动调整电网中的能源分配,不
- 大模型对齐方法笔记一:DPO及其变种IPO、KTO、CPO
chencjiajy
深度学习笔记机器学习人工智能
DPODPO(DirectPreferenceOptimization)出自2023年5月的斯坦福大学研究院的论文《DirectPreferenceOptimization:YourLanguageModelisSecretlyaRewardModel》,大概是2023-2024年最广为人知的RLHF的替代对齐方法了。DPO的主要思想是在强化学习的目标函数中建立决策函数与奖励函数之间的关系,以规避
- 多智能体环境设计(二)
AI-星辰
强化学习自定义环境python机器学习
多智能体环境设计:接口设计与实现目录引言PettingZoo框架概述核心接口方法详解3.1reset()方法3.2step(action)方法3.3observe(agent)方法3.4render()方法空间定义4.1观察空间4.2动作空间高级特性5.1并行环境5.2智能体通信5.3动态环境性能优化测试和调试实际应用示例最佳实践和常见陷阱1.引言多智能体环境是强化学习和人工智能研究中的一个重要领
- 【伤寒强化学习训练】打卡第四十五天 一期90天
A卐炏澬焚
3.5.2麻黄汤续讲与大、小青龙汤麻黄九禁【7.18】脉浮紧者,法当汗出而解。若身重心悸者,不可发汗,须自汗出乃愈。所以然者,尺中脉微,此里虚也。须里实,津液自和,便自汗出愈。【7.19】脉浮紧者,法当身疼痛,宜以汗解之。假令尺中迟者,不可发汗。所以然者,以荣气不足,血弱故也。【7.18】:脉浮紧的人照理说要发汗,如果身体重、心悸是不可以发汗;发汗,不一定用麻黄汤,大青龙汤也可以感冒很多人身体都是
- 从自动驾驶看无人驾驶叉车的技术落地和应用
电气_空空
自动驾驶自动驾驶机器人人工智能毕设
摘要|介绍无人驾驶叉车在自动驾驶技术中的应用,分析其关键技术,如环境感知、定位、路径规划等,并讨论机器学习算法和强化学习算法的应用以提高无人叉车的运行效率和准确性。无人叉车在封闭结构化环境、机器学习、有效数据集等方法的助力下,可有效推动叉车无人驾驶关键技术的发展。关键词:无人叉车;自动驾驶;机器学习;数据集随着人工智能技术的持续进步,无人叉车领域的供给与需求均呈现迅猛增长态势。它们不仅正在逐步替代
- 强化学习自定义环境基础知识
AI-星辰
强化学习自定义环境python机器学习
1.引言本文旨在全面介绍OpenAIGym自定义环境的创建过程,重点解析其接口、关键属性和函数。本指南适合初学者深入了解强化学习环境的构建原理和实践方法。2.OpenAIGym环境基础OpenAIGym提供了一个标准化的接口,用于创建和使用强化学习环境。了解这个接口的核心组件是创建自定义环境的基础。2.1Env类所有Gym环境都继承自gym.Env类。这个基类定义了环境应该具有的基本结构和方法。i
- 【《伤寒论》强化学习训练】打卡第32天,一期目标90天
最闪亮的那颗星_b02d
一、桂枝加葛根汤和葛根汤不能通用,因为葛根汤里有麻黄,会散阳气。太阳传到阳明时血分受邪,要用麻黄从血分把邪气发出来,所以用葛根汤治燥热感冒。桂枝汤治营卫不调的出汗或桂枝加附子汤治阳虚自汗,不能一开始就用黄芪,黄芪会让桂枝汤发挥不了通营卫的效果,汗止不了。人体表面的能量不足的时候,身体不能收摄自己身体的水分,桂枝加附子汤里有附子,可治阳虚自汗。玉屏风散治表虚的汗有效;桂枝加附子汤治虚汗有效,但是两个
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出