- 计算机网络技术
CZZDg
计算机网络
目录一.网络概述1.网络的概念2.网络发展是3.网络的四要素4.网络功能5.网络类型6.网络协议与标准7.网络中常见的概念8.网络拓补结构二.网络模型1.分层思想2.OSI七层模型3.TCP/IP五层模型4.数据的封装与解封装过程三.IP地址1.进制转换2.IP地址定义3.IP地址组成成分4.IP地址分类5.地址划分6、相关概念一.网络概述1.网络的概念两个主机通过传输介质和通信协议实现通信和资源
- 如何使用Python实现交通工具识别
如何使用Python实现交通工具识别文章目录技术架构功能流程识别逻辑用户界面增强特性依赖项主要类别内容展示该系统是一个基于深度学习的交通工具识别工具,具备以下核心功能与特点:技术架构使用预训练的ResNet50卷积神经网络模型(来自ImageNet数据集)集成图像增强预处理技术(随机裁剪、旋转、翻转等)采用多数投票机制提升预测稳定性基于置信度评分的结果筛选策略功能流程用户通过GUI界面选择待识别图
- YOLOv5基础 | 万字长文带你深度解析yolov5s.yaml配置文件
小哥谈
YOLO算法:基础+进阶+改进YOLO人工智能目标检测机器学习计算机视觉深度学习
前言:Hello大家好,我是小哥谈。配置文件yolov5s.yaml在YOLOv5模型训练过程中发挥着至关重要的作用,属于初学者必知必会的文件!在YOLOv5-6.0版本源码中,配置了5种不同大小的网络模型,分别是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x,其中YOLOv5n是网络深度和宽度最小但检测速度最快的模型,其他4种模型都是在YOLOv5n的基础上不断加
- Docker网络模型深度解析|Docker|网络模型|容器化
concisedistinct
运维编程开发技术栈Dockerdocker容器运维
目录1.Docker网络模型概述1.1Docker网络的基本概念1.2Docker的主要网络模式2.Bridge网络模式2.1Bridge模式的工作原理2.2Bridge模式的网络配置2.3Bridge模式的应用场景3.Host网络模式3.1Host模式的工作原理3.2Host模式的优缺点3.3Host模式的应用场景4.Overlay网络模式4.1Overlay模式的工作原理4.2Overlay模
- 【PyTorch】PyTorch中torch.nn模块的卷积层
PyTorch深度学习总结第七章PyTorch中torch.nn模块的卷积层文章目录PyTorch深度学习总结前言一、torch.nn模块1.模块的基本组成部分1.1层(Layers)1.2损失函数(LossFunctions)1.3激活函数(ActivationFunctions)2.自定义神经网络模型3.模块的优势二、torch.nn模块的卷积层1.卷积的定义2.常见的卷积层3.卷积层的重要参
- PyTorch 的 torch.nn 模块学习
torch.nn是PyTorch中专门用于构建和训练神经网络的模块。它的整体架构分为几个主要部分,每部分的原理、要点和使用场景如下:1.nn.Module原理和要点:nn.Module是所有神经网络组件的基类。任何神经网络模型都应该继承nn.Module,并实现其forward方法。使用场景:用于定义和管理神经网络模型,包括层、损失函数和自定义的前向传播逻辑。主要API和使用场景:__init__
- Docker 容器间通信:Link 与自定义网络
Docker容器间通信:Link与自定义网络关键词:Docker容器通信、容器网络模型、DockerLink、自定义网络、Bridge网络、Overlay网络、网络驱动摘要:本文深入解析Docker容器间通信的两种核心方式——传统Link机制与现代自定义网络方案。通过对比分析两者的技术原理、实现方式、适用场景及最佳实践,帮助读者理解Docker网络架构的演进逻辑。文章从容器网络基础概念出发,详细阐
- 长短期记忆(LSTM)网络模型
凌莫凡
lstm人工智能rnn深度学习神经网络
一、概述 长短期记忆(LongShort-TermMemory,LSTM)网络是一种特殊的循环神经网络(RNN),专门设计用于解决传统RNN在处理长序列数据时面临的梯度消失/爆炸问题,能够有效捕捉长距离依赖关系。其核心在于引入记忆细胞(CellState)和门控机制(GateMechanism),通过控制信息的流动来实现对长期信息的存储与遗忘。二、模型原理 LSTM由记忆细胞和三个门控单元(遗
- 什么是神经网络架构搜索(NAS, Neural Architecture Search),如何写对应的python程序代码呢
小桥流水---人工智能
算法深度学习Python程序代码神经网络架构python
一、什么是神经网络架构搜索(NAS,NeuralArchitectureSearch)神经网络架构搜索(NAS,NeuralArchitectureSearch)是一种用于自动化设计神经网络架构的技术。传统的神经网络模型架构设计通常依赖于专家经验和大量试错,而NAS通过算法自动搜索网络架构,以发现最适合特定任务的神经网络设计。NAS可以极大地减少人工调参的时间和精力,并且在某些情况下能够找到比手工
- 端到端自动驾驶系统关键技术
未来创世纪
自动驾驶自动驾驶人工智能机器学习
一、感知决策一体化模型架构单一神经网络整合全流程端到端神经网络能够直接将传感器输入映射为控制输出,消除了传统模块化架构中感知、规划、控制等独立模块之间的割裂。传统架构中,感知模块负责识别环境信息,决策模块根据感知结果进行路径规划和决策制定,控制模块再根据决策执行车辆的操作,各模块之间存在信息传递损耗和延迟。而端到端架构通过一个单一的神经网络模型,将整个流程整合在一起,使传感器采集到的数据能够直接用
- 计算机网络高频面试题
1、介绍一下ISO七层网络模型?ISO七层网络模型(OSI参考模型)是国际标准化组织(ISO)提出的网络通信框架,将网络通信划分为七个逻辑层次,每层提供特定的服务并与相邻层交互。其核心目的是实现不同厂商设备的互操作性,并简化网络通信的设计与故障排查。(1)OSI七层模型的结构:物理层(PhysicalLayer)功能:负责传输原始比特流,定义电压、接口等物理特性。关键技术:双绞线、光纤、无线信号(
- 大语言模型(LLM)笔记
笑衬人心。
大模型学习语言模型笔记人工智能
一、什么是大语言模型(LLM)?LLM(LargeLanguageModel)是基于Transformer架构构建,并在海量文本语料上训练出的具备自然语言理解和生成能力的深度神经网络模型。其本质任务是**预测下一个token(词/字/符号)**的概率分布,但通过大规模参数和数据的支持,表现出类人智能的行为。二、核心架构:Transformer由Google在2017年提出,是目前LLM的主流架构。
- nnv开源神经网络验证软件工具
一、软件介绍文末提供程序和源码下载用于神经网络验证的Matlab工具箱,该工具箱实现了可访问性方法,用于分析自主信息物理系统(CPS)领域中带有神经网络控制器的神经网络和控制系统。二、相关工具和软件该工具箱利用神经网络模型转换工具(nnmt)和闭环系统分析、混合系统模型转换和转换工具(HyST)以及CONTINUOUSReachabilityAnalyzer(CORA)三、无需安装即可执行NNV可
- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- 深度学习在人脸识别中的应用及Python实现
loop_syntax648
机器学习-深度学习
人脸识别是一种通过计算机技术识别和验证人脸的方法,近年来深度学习在人脸识别领域取得了显著的进展。深度学习模型能够学习和提取人脸图像中的高级特征,从而实现准确的人脸识别。本文将介绍深度学习在人脸识别中的应用,并提供Python实现的源代码。深度学习模型通常基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)进行人脸识别。CNN是一种专门用于处理图像和视觉数据的神经网络模型
- LSTM、GRU 与 Transformer网络模型参数计算
suixinm
lstmgrutransformer
参数计算公式对比模型类型参数计算公式关键组成部分LSTM4×(embed_dim×hidden_size+hidden_size²+hidden_size)4个门控结构GRU3×(embed_dim×hidden_size+hidden_size²+hidden_size)3个门控结构Transformer(Encoder)12×embed_dim²+9×embed_dim×ff_dim+14×e
- 详解套接字 Socket 与网络 IO 模型演进
紫菜紫薯紫甘蓝
#计算机网络网络selectlinuxsocketIO模型
详解套接字Socket与网络IO模型演进前言:我要吐了,学redis要看网络模型,学nginx要看网络模型,学tomcat要看网络模型,学netty要看网络模型,每次看到文档中的select、epoll、poll头都大了,最近找了多篇参考资料,总结socket和各种网络模型到底指的什么,演进流程是怎么样的,希望这篇文章可以总结清楚。从网络通信说开去我们知道,网络中的请求的发送,以http为例,需要
- Docker跨主机网络:解锁分布式应用部署的新纪元
团儿.
dockerdocker网络容器docker跨主机网络overlayMacVlan
作者简介:我是团团儿,是一名专注于云计算领域的专业创作者,感谢大家的关注座右铭:云端筑梦,数据为翼,探索无限可能,引领云计算新纪元个人主页:团儿.-CSDN博客目录前言:正文:Docker的跨主机网络网络模型分类:常见的网络模型:各方案的网络模型描述如下:连通与隔离:性能:一、overlay的解决方案**环境限制**:####实验环境:通过网盘分享的文件:consul.tar链接:https://
- YOLOv10改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv10的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv10的改进过程中,针对目标
- 多层次特征融合的中医药材推荐方法研究
罗伯特之技术屋
物联网及AI前沿技术专栏计算机软件及理论发展专栏信息资源管理与发展专栏机器学习神经网络人工智能
摘要深度学习技术迅速发展,在中医药材推荐任务中被大量使用。针对传统神经网络模型在中医药材推荐应用中推荐精度不高、模型参数量较大等问题,提出一种多层次特征融合的轻量级药材推荐方法。在TextCNN模型参数量少、特征抽取全面等特点的基础上,进一步融合症状语义特征和序列特征,从而获取更全面的症状药材特征完成中医药材推荐任务,并将其在中医药材公开数据集上进行验证。实验表明,该方法对药材推荐的F5得分达到0
- AI人工智能领域神经网络的云计算集成应用
AI大模型应用实战
人工智能神经网络云计算ai
AI人工智能领域神经网络的云计算集成应用关键词:神经网络、云计算、AI集成、分布式训练、模型部署、弹性计算、深度学习摘要:本文深入探讨了神经网络在云计算环境中的集成应用,从基础概念到实际部署,全面分析了云计算如何赋能AI神经网络的发展。文章将详细介绍神经网络与云计算的结合原理、关键技术实现、性能优化策略以及典型应用场景,并通过实际案例展示如何利用云平台高效运行神经网络模型。最后,我们将展望这一领域
- 【深度学习-Day 21】框架入门:神经网络模型构建核心指南 (Keras & PyTorch)
吴师兄大模型
深度学习入门到精通深度学习神经网络keras人工智能pythonpytorchLLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【可持续学习网络模型0】目前全球增量学习或持续学习研究现状
帮带做
人工智能学习python硕博论文创新持续学习增量学习神经网络
全球增量学习或持续学习研究现状一、全球研究现状综述(2025年主流)✅1.研究目标和挑战✅2.主流研究范式(按解决灾难性遗忘的策略分类)二、重点代表性方法简介(含通俗解释)1.**EWC(ElasticWeightConsolidation)**:2.**iCaRL(IncrementalClassifierandRepresentationLearning)**:3.**HAT(HardAtte
- 模型集成:提升机器学习模型性能的有效策略及实践
t0_54program
大数据与人工智能机器学习人工智能个人开发
在机器学习领域,模型集成是一种常见且有效的方法,它旨在提高模型的性能和泛化能力。简单来说,模型集成就是通过多种方式将多个模型组合起来,以提升对单个问题的处理表现。模型集成的优势模型集成具备诸多优点,它能够增强机器学习模型在未知数据上的性能、鲁棒性和泛化能力。以基于树的算法为例,它们擅长利用多棵树的集成来提升整体性能,在某些特定任务中表现出色。而对于神经网络模型,虽然在一般情况下,单个模型足以刻画特
- 网络核心 - CNI、Service 与 Ingress/Gateway API 解析
weixin_42587823
云原生网络gatewayphp
网络核心-CNI、Service与Ingress/GatewayAPI解析Kubernetes的强大之处在于它极大地简化了容器化应用的部署和管理,但其网络模型的灵活性和复杂性也常常让初学者感到困惑。作为SRE,我们需要拨开迷雾,理解流量在K8s集群内部以及进出集群时,到底是如何流转的。Pod网络基础:谁给Pod分配IP?(CNI)我们知道,在K8s中,每个Pod都拥有自己唯一的IP地址。这是实现“
- Python实现简单的深度学习实践
master_chenchengg
pythonpythonPythonpython开发IT
Python实现简单的深度学习实践Python:通往深度学习世界的钥匙动手搭建你的第一个神经网络模型从零开始,用Python解析MNIST手写数字识别超越基础:使用Keras快速构建卷积神经网络实战演练:训练一个简单的图像分类器Python:通往深度学习世界的钥匙在当今这个数据驱动的时代,Python无疑成为了打开深度学习大门的金钥匙。它不仅语法简洁、易于上手,而且拥有强大的社区支持和丰富的库资源
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- 八种常见的神经网络介绍
EdmundXjs
技术专栏神经网络人工智能深度学习
在深度学习的世界里,各种神经网络模型层出不穷,每一种都有其独特的魅力和优势。今天,以下是八种常见的神经网络模型及其特点介绍,让我们来看看它们是如何在人工智能领域大放异彩的。概述(八大神经网络)卷积神经网络(CNN):适用于图像、音频等网格数据处理。通过卷积层提取局部特征,池化层降维,广泛用于图像分类、目标检测。特点是参数共享和权值的局部连接,减少了模型复杂度。循环神经网络(RNN):擅长处理序
- 小白带你一起学Linux系统之计算机网络技术
KellenKellenHao
linux计算机网络运维
目录计算机网络技术一、网络概述1.网络的概念2.网络发展史3.网络的四要素4.网络功能5.网络类型6.网络协议与标准7.网络常见概念8.网络拓扑结构二、网络模型1.分层思想1.1概述1.2核心理念2.OSI七层理念3.TCP/IP五层模型5.应用层4.传输层3.网络层2.数据链路层1.物理层4数据的封装与解封过程4.1PDU协议4.2数据封装与解封过程三、IP地址1.进制转换2.IP地址定义3.I
- YOLOv12改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv12改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv12的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv12的改进过程中,针对目标
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {