图像数据集尺寸调整及文件合并

1 图像尺寸调整并保存

1.0 源

import tensorflow as tf 
import os 
import time
from os.path import join
import matplotlib.pyplot as plt

def max_num(image_path):
	'''获取最大编号.
	参数:
	image_path: 图像文件路径
	返回:
	max_number: 文件最大编号
	'''
    file_lists = os.listdir(image_path)
    numbers = []
    if file_lists:
        for file_list in file_lists:
            number, _ = os.path.splitext(file_list)
            numbers.append(int(number))
        max_number = max([x for x in numbers])
    else:
        max_number = 0
    return max_number

def parse_function(filenames):
	'''图像解析函数.
	参数:
	filenames: 文件名称队列(Tensor)
	返回:
	img_decode: 图像编码
	'''
    img_bytes = tf.read_file(filenames)
    img_decode = tf.image.decode_jpeg(img_bytes, channels=3)
    return img_decode

def reshape_image(image_path, save_path, max_number, sess):
    '''设置图像尺寸.
	参数:
    image_path: 源图像路径
    save_path: 处理后图像的保存路径
    max_number: 图像最大编号
    sess: tensorflow会话
    
  	返回(输出):
    处理图像的进度
    '''
    '''获取文件名列表'''
    imgs_name = os.listdir(image_path)
    png = imgs_name[0].lower().endswith("png")
    '''文件路径:路径+文件名'''
    imgs_path = [join(image_path, f) for f in imgs_name]
    imgs_num = len(imgs_path)
    '''文件路径队列'''
    imgs_queue = tf.data.Dataset.from_tensor_slices(imgs_path)
    '''文件解析数据队列'''
    imgs_map = imgs_queue.map(parse_function)
    '''文件数据遍历'''
    img_decode = imgs_map.make_one_shot_iterator().get_next()
    for i in range(imgs_num):
        img_type = img_decode.dtype
        if img_decode.dtype != tf.float32:
        	'''图像数据转为float32格式,降低尺寸调节信息损失(浮点数据)'''
            img_decode = tf.image.convert_image_dtype(img_decode, dtype=tf.float32)
        '''图像尺寸调节'''
        img_decode = tf.image.resize_images(img_decode, [128, 128], method=0)
        if img_decode.dtype == tf.float32:
        	'''图像数据格式恢复:uint8,用于存储'''
            img_decode = tf.image.convert_image_dtype(img_decode, dtype=tf.uint8)
        img_value = sess.run(img_decode)
        '''设置图形像素'''
        plt.figure(figsize=(1.28, 1.28))
        '''读入图形数据,否则图像数据为空'''
        plt.imshow(img_value)
        plt.axis("off")
        plt.savefig(save_path+"/{}.jpg".format(max_number+i+1), format="jpg")
        print("Processing {} image.".format(max_number+i+1))
        '''matplotlib打开的图像数量有限制,随开随关'''
        plt.close("all")

def time_costed(times):
    '''时间格式转换:秒转为时:分:秒.
    参数:
    times:秒
    
    返回:
    hours:时
    minutes:分
    seconds:秒
    '''
    time_cost = times / 3600
    '''//提取整数部分,即小时'''
    hours = times // 3600
    '''获取小数部分:如1.52-1=0.52'''
    temp = time_cost - hours
    '''转化分钟:0.52*60=31.2分钟'''
    temp_1 = temp * 60
    '''提取分钟'''
    minutes = int(temp_1)
    '''拆分整数与小数部分:["31","2"]'''
    temp_2 = str(temp_1).split(".")
    '''提取小数部分并转为int(eval)'''
    temp_3 = temp_2[1][:1]
    '''获取秒数'''
    seconds = eval(temp_3) * 6
    return hours, minutes, seconds

if __name__ == "__main__":
    with tf.Session() as sess:
        if not os.path.exists("./handwrite_resized_images"):
            os.makedirs("./handwrite_resized_images")
        save_path = "./handwrite_resized_images"
        start_time = time.time()
        '''开启协程'''
        coord = tf.train.Coordinator()
        '''启用线程,用协程填充'''
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        images_path = "./data/handwrite_images"
        '''获取二级目录directory list: ['images_2', 'images_1']'''
        dirs_list = os.listdir(images_path)
        '''directory path: ['./test_images/images_2', './test_images/images_1']'''
        dirs_path = [join(images_path, f) for f in dirs_list]
        for dir_path in dirs_path:
            s_time = time.time()
            max_number = max_num(save_path)
            image_number = reshape_image(dir_path, save_path, max_number, sess)
            e_time = time.time()
            time_c = e_time - s_time
            hours, minutes, seconds = time_costed(time_c)
            print("Time costed: {} h {} m {} s".format(hours, minutes, seconds))
		# try:
			# while not coord.should_stop():
			# 	pass	
		# except tf.errors.OutOfRangeError:
		# 	print("Executive finished.")
		# finally:
		# 	coord.request_stop()
		# coord.join(threads)
		'''协程停止'''
        coord.request_stop()
        '''线程锁'''
        coord.join(threads)
        end_time = time.time()
        time_cost = end_time - start_time
        hours, minutes, seconds = time_costed(time_cost)
        print("Total time costed: {} h {} m {} s".format(hours, minutes, seconds))

1.2 内存消耗(CPU版)

图像数据集尺寸调整及文件合并_第1张图片

图1.0 图像处理内存消耗

该数据来源于将2800张200$\times$200~200 × \times × 300不同尺寸的图像数据转换为128$\times$128尺寸的数据,可见,图像处理对内存的消耗很高,本机使用CPU配置,集成显卡,处理过程中会出现短时卡顿现象.

2 图像数据合并

import os 
from os.path import join, abspath, dirname
import shutil
base_dir = abspath(dirname(__name__))
print("base directory: {}".format(base_dir))
# images_path = './train_images'
images_path = './test_images'
'''directory list: ['images_2', 'images_1']'''
directory_list = os.listdir(images_path)
'''directory path: ['./test_images/images_2', './test_images/images_1']'''
dir_path = [join(images_path, f) for f in directory_list]
'''file name list: ['b3.jpg', 'b4.jpg', 'b1.jpg', 'b2.jpg']'''
file_list = os.listdir(dir_path[0])
'''file path: ['./test_images/images_2/b3.jpg', './test_images/images_2/b4.jpg', './test_images/images_2/b1.jpg', './test_images/images_2/b2.jpg']'''
file_path = [join(dir_path[0], file_name) for file_name in file_list]
print("file path: {}".format(file_path))
for file in file_path:
    shutil.copy(file, dir_path[1])

3 总结

(1) 图像数据处理,先获取图像文件目录和文件名,后将文件路径和文件名拼接,用于处理;
(2) 图像尺寸调整需要将图像转换为float32格式(降低图像信息损失,若整数之间直接处理,会丢失小数部分的信息),保存图像时将数据格式转换为uint8格式;
(3) matplotlib保存图像时,首先通过imshow获取数据,然后保存;为了保证大量图像数据存储正常,需要保存之后,即时关闭打开的窗口,使用close关闭;
(4) 图像合并,需要获取图像的拼接路径,而不是单独的文件名称,shutil.copy(file, path)file为文件,path为目标路径;
(5) 对数据进行分组处理,可有效缓解服务器或本地主机的压力;


[参考文献]
[1]https://blog.csdn.net/Xin_101/article/details/82585098
[2]https://blog.csdn.net/Xin_101/article/details/84231722


你可能感兴趣的:(#,AI,ABC,#,图像处理)