WindowOperations(窗口操作)
Spark还提供了窗口的计算,它允许你使用一个滑动窗口应用在数据变换中。下图说明了该滑动窗口。
如图所示,每个时间窗口在一个个DStream中划过,每个DSteam中的RDD进入Window中进行合并,操作时生成为
窗口化DSteam的RDD。在上图中,该操作被应用在过去的3个时间单位的数据,和划过了2个时间单位。这说明任
何窗口操作都需要指定2个参数。
上面的2个参数的大小,必须是接受产生一个DStream时间的倍数
让我们用一个例子来说明窗口操作。比如说,你想用以前的WordCount的例子,来计算最近30s的数据的中的单词
数,10S接受为一个DStream。为此,我们要用reduceByKey操作来计算最近30s数据中每一个DSteam中关于
(word,1)的pair操作。它可以用reduceByKeyAndWindow操作来实现。一些常见的窗口操作如下。所有这些操作
都需要两个参数— window length(窗口长度)和sliding interval(滑动间隔)。
————————-实验数据———————————————————————-
spark
Streaming
better
than
storm
you
need
it
yes
do
it
(每秒在其中随机抽取一个,作为Socket端的输入),socket端的数据模拟和实验函数等程序见附录百度云链接
———————————————–window操作————————————————————————-
-
//输入:窗口长度(隐:输入的滑动窗口长度为形成Dstream的时间)
-
//输出:返回一个DStream,這个DStream包含這个滑动窗口下的全部元素
-
def window(windowDuration: Duration): DStream[T] = window(windowDuration,
this.slideDuration)
-
-
//输入:窗口长度和滑动窗口长度
-
//输出:返回一个DStream,這个DStream包含這个滑动窗口下的全部元素
-
def window(windowDuration: Duration, slideDuration: Duration): DStream[T] = ssc.withScope {
-
new WindowedDStream(
this, windowDuration, slideDuration)
-
}
-
import org.apache.log4j.{Level, Logger}
-
import org.apache.spark.streaming.{Seconds, StreamingContext}
-
import org.apache.spark.{SparkConf, SparkContext}
-
-
object windowOnStreaming {
-
def main(args: Array[String]) {
-
/**
-
* this is test of Streaming operations-----window
-
*/
-
Logger.getLogger(
"org.apache.spark").setLevel(Level.ERROR)
-
Logger.getLogger(
"org.eclipse.jetty.Server").setLevel(Level.OFF)
-
-
val conf =
new SparkConf().setAppName(
"the Window operation of SparK Streaming").setMaster(
"local[2]")
-
val sc =
new SparkContext(conf)
-
val ssc =
new StreamingContext(sc,Seconds(
2))
-
-
-
//set the Checkpoint directory
-
ssc.checkpoint(
"/Res")
-
-
//get the socket Streaming data
-
val socketStreaming = ssc.socketTextStream(
"master",
9999)
-
-
val data = socketStreaming.map(x =>(x,
1))
-
//def window(windowDuration: Duration): DStream[T]
-
val getedData1 = data.window(Seconds(
6))
-
println(
"windowDuration only : ")
-
getedData1.print()
-
//same as
-
// def window(windowDuration: Duration, slideDuration: Duration): DStream[T]
-
//val getedData2 = data.window(Seconds(9),Seconds(3))
-
//println("Duration and SlideDuration : ")
-
//getedData2.print()
-
-
ssc.start()
-
ssc.awaitTermination()
-
}
-
-
}
——————–reduceByKeyAndWindow操作——————————–
-
/**通过对每个滑动过来的窗口应用一个reduceByKey的操作,返回一个DSream,有点像
-
* `DStream.reduceByKey(),但是只是這个函数只是应用在滑动过来的窗口,hash分区是采用spark集群
-
* 默认的分区树
-
* @param reduceFunc 从左到右的reduce 函数
-
* @param windowDuration 窗口时间
-
* 滑动窗口默认是1个batch interval
-
* 分区数是是RDD默认(depend on spark集群core)
-
*/
-
def reduceByKeyAndWindow(
-
reduceFunc: (V, V) => V,
-
windowDuration: Duration
-
): DStream[(K, V)] = ssc.withScope {
-
reduceByKeyAndWindow(reduceFunc, windowDuration, self.slideDuration, defaultPartitioner())
-
}
-
-
/**通过对每个滑动过来的窗口应用一个reduceByKey的操作,返回一个DSream,有点像
-
* `DStream.reduceByKey(),但是只是這个函数只是应用在滑动过来的窗口,hash分区是采用spark集群
-
* 默认的分区树
-
* @param reduceFunc 从左到右的reduce 函数
-
* @param windowDuration 窗口时间
-
* @param slideDuration 滑动时间
-
*/
-
def reduceByKeyAndWindow(
-
reduceFunc: (V, V) => V,
-
windowDuration: Duration,
-
slideDuration: Duration
-
): DStream[(K, V)] = ssc.withScope {
-
reduceByKeyAndWindow(reduceFunc, windowDuration, slideDuration, defaultPartitioner())
-
}
-
-
-
/**通过对每个滑动过来的窗口应用一个reduceByKey的操作,返回一个DSream,有点像
-
* `DStream.reduceByKey(),但是只是這个函数只是应用在滑动过来的窗口,hash分区是采用spark集群
-
* 默认的分区树
-
* @param reduceFunc 从左到右的reduce 函数
-
* @param windowDuration 窗口时间
-
* @param slideDuration 滑动时间
-
-
* @param numPartitions 每个RDD的分区数.
-
*/
-
def reduceByKeyAndWindow(
-
reduceFunc: (V, V) => V,
-
windowDuration: Duration,
-
slideDuration: Duration,
-
numPartitions: Int
-
): DStream[(K, V)] = ssc.withScope {
-
reduceByKeyAndWindow(reduceFunc, windowDuration, slideDuration,
-
defaultPartitioner(numPartitions))
-
}
-
-
/**
-
/**通过对每个滑动过来的窗口应用一个reduceByKey的操作,返回一个DSream,有点像
-
* `DStream.reduceByKey(),但是只是這个函数只是应用在滑动过来的窗口,hash分区是采用spark集群
-
* 默认的分区树
-
* @param reduceFunc 从左到右的reduce 函数
-
* @param windowDuration 窗口时间
-
* @param slideDuration 滑动时间
-
-
* @param numPartitions 每个RDD的分区数.
-
* @param partitioner 设置每个partition的分区数
-
*/
-
def reduceByKeyAndWindow(
-
reduceFunc: (V, V) => V,
-
windowDuration: Duration,
-
slideDuration: Duration,
-
partitioner: Partitioner
-
): DStream[(K, V)] = ssc.withScope {
-
self.reduceByKey(reduceFunc, partitioner)
-
.window(windowDuration, slideDuration)
-
.reduceByKey(reduceFunc, partitioner)
-
}
-
-
/**
-
*通过对每个滑动过来的窗口应用一个reduceByKey的操作.同时对old RDDs进行了invReduceFunc操作
-
* hash分区是采用spark集群,默认的分区树
-
* @param reduceFunc从左到右的reduce 函数
-
* @param invReduceFunc inverse reduce function; such that for all y, invertible x:
-
* `invReduceFunc(reduceFunc(x, y), x) = y`
-
* @param windowDuration窗口时间
-
* @param slideDuration 滑动时间
-
* @param filterFunc 来赛选一定条件的 key-value 对的
-
*/
-
def reduceByKeyAndWindow(
-
reduceFunc: (V, V) => V,
-
invReduceFunc: (V, V) => V,
-
windowDuration: Duration,
-
slideDuration: Duration = self.slideDuration,
-
numPartitions: Int = ssc.sc.defaultParallelism,
-
filterFunc: ((K, V)) => Boolean =
-
): DStream[(K, V)] = ssc.withScope {
-
reduceByKeyAndWindow(
-
reduceFunc, invReduceFunc, windowDuration,
-
slideDuration, defaultPartitioner(numPartitions), filterFunc
-
)
-
}
-
-
/**
-
*通过对每个滑动过来的窗口应用一个reduceByKey的操作.同时对old RDDs进行了invReduceFunc操作
-
* hash分区是采用spark集群,默认的分区树
-
* @param reduceFunc从左到右的reduce 函数
-
* @param invReduceFunc inverse reduce function; such that for all y, invertible x:
-
* `invReduceFunc(reduceFunc(x, y), x) = y`
-
* @param windowDuration窗口时间
-
* @param slideDuration 滑动时间
-
* @param partitioner 每个RDD的分区数.
-
* @param filterFunc 来赛选一定条件的 key-value 对的
-
*/
-
def reduceByKeyAndWindow(
-
reduceFunc: (V, V) => V,
-
invReduceFunc: (V, V) => V,
-
windowDuration: Duration,
-
slideDuration: Duration,
-
partitioner: Partitioner,
-
filterFunc: ((K, V)) => Boolean
-
): DStream[(K, V)] = ssc.withScope {
-
-
val cleanedReduceFunc = ssc.sc.clean(reduceFunc)
-
val cleanedInvReduceFunc = ssc.sc.clean(invReduceFunc)
-
val cleanedFilterFunc =
if (filterFunc !=
) Some(ssc.sc.clean(filterFunc))
else None
-
new ReducedWindowedDStream[K, V](
-
self, cleanedReduceFunc, cleanedInvReduceFunc, cleanedFilterFunc,
-
windowDuration, slideDuration, partitioner
-
)
-
}
-
import org.apache.log4j.{Level, Logger}
-
import org.apache.spark.streaming.{Seconds, StreamingContext}
-
import org.apache.spark.{SparkConf, SparkContext}
-
-
-
object reduceByWindowOnStreaming {
-
-
def main(args: Array[String]) {
-
/**
-
* this is test of Streaming operations-----reduceByKeyAndWindow
-
*/
-
Logger.getLogger(
"org.apache.spark").setLevel(Level.ERROR)
-
Logger.getLogger(
"org.eclipse.jetty.Server").setLevel(Level.OFF)
-
-
val conf =
new SparkConf().setAppName(
"the reduceByWindow operation of SparK Streaming").setMaster(
"local[2]")
-
val sc =
new SparkContext(conf)
-
val ssc =
new StreamingContext(sc,Seconds(
2))
-
-
//set the Checkpoint directory
-
ssc.checkpoint(
"/Res")
-
-
//get the socket Streaming data
-
val socketStreaming = ssc.socketTextStream(
"master",
9999)
-
-
val data = socketStreaming.map(x =>(x,
1))
-
//def reduceByKeyAndWindow(reduceFunc: (V, V) => V, windowDuration: Duration ): DStream[(K, V)]
-
//val getedData1 = data.reduceByKeyAndWindow(_+_,Seconds(6))
-
-
val getedData2 = data.reduceByKeyAndWindow(_+_,
-
(a,b) => a+b*
0
-
,Seconds(
6),Seconds(
2))
-
-
val getedData1 = data.reduceByKeyAndWindow(_+_,_-_,Seconds(
9),Seconds(
6))
-
-
println(
"reduceByKeyAndWindow : ")
-
getedData1.print()
-
-
ssc.start()
-
ssc.awaitTermination()
-
-
-
}
-
}
這里出现了invReduceFunc函数這个函数有点特别,一不注意就会出错,现在通过分析源码中的
ReducedWindowedDStream這个类内部来进行说明:
——————reduceByWindow操作—————————
-
/输入:reduceFunc、窗口长度、滑动长度
-
//输出:(a,b)为从几个从左到右一次取得两个元素
-
//(,a,b)进入reduceFunc,
-
def reduceByWindow(
-
reduceFunc: (T, T) => T,
-
windowDuration: Duration,
-
slideDuration: Duration
-
): DStream[T] = ssc.withScope {
-
this.reduce(reduceFunc).window(windowDuration, slideDuration).reduce(reduceFunc)
-
}
-
/**
-
*输入reduceFunc,invReduceFunc,窗口长度、滑动长度
-
*/
-
def reduceByWindow(
-
reduceFunc: (T, T) => T,
-
invReduceFunc: (T, T) => T,
-
windowDuration: Duration,
-
slideDuration: Duration
-
): DStream[T] = ssc.withScope {
-
this.map((
1, _))
-
.reduceByKeyAndWindow(reduceFunc, invReduceFunc, windowDuration, slideDuration,
1)
-
.map(_._2)
-
}
-
import org.apache.log4j.{Level, Logger}
-
import org.apache.spark.streaming.{Seconds, StreamingContext}
-
import org.apache.spark.{SparkConf, SparkContext}
-
-
/**
-
* Created by root on 6/23/16.
-
*/
-
object reduceByWindow {
-
def main(args: Array[String]) {
-
/**
-
* this is test of Streaming operations-----reduceByWindow
-
*/
-
Logger.getLogger(
"org.apache.spark").setLevel(Level.ERROR)
-
Logger.getLogger(
"org.eclipse.jetty.Server").setLevel(Level.OFF)
-
-
val conf =
new SparkConf().setAppName(
"the reduceByWindow operation of SparK Streaming").setMaster(
"local[2]")
-
val sc =
new SparkContext(conf)
-
val ssc =
new StreamingContext(sc,Seconds(
2))
-
//set the Checkpoint directory
-
ssc.checkpoint(
"/Res")
-
-
//get the socket Streaming data
-
val socketStreaming = ssc.socketTextStream(
"master",
9999)
-
-
//val data = socketStreaming.reduceByWindow(_+_,Seconds(6),Seconds(2))
-
val data = socketStreaming.reduceByWindow(_+_,_+_,Seconds(
6),Seconds(
2))
-
-
-
println(
"reduceByWindow: count the number of elements")
-
data.print()
-
-
-
ssc.start()
-
ssc.awaitTermination()
-
-
}
-
}
———————————————–countByWindow操作———————————
-
/**
-
* 输入 窗口长度和滑动长度,返回窗口内的元素数量
-
* @param windowDuration 窗口长度
-
* @param slideDuration 滑动长度
-
*/
-
def countByWindow(
-
windowDuration: Duration,
-
slideDuration: Duration): DStream[Long] = ssc.withScope {
-
this.map(_ =>
1L).reduceByWindow(_ + _, _ - _, windowDuration, slideDuration)
-
//窗口下的DStream进行map操作,把每个元素变为1之后进行reduceByWindow操作
-
}
-
import org.apache.log4j.{Level, Logger}
-
import org.apache.spark.streaming.{Seconds, StreamingContext}
-
import org.apache.spark.{SparkConf, SparkContext}
-
-
/
-
* Created by root on 6/23/16.
-
/
-
object countByWindow {
-
def main(args: Array[String]) {
-
-
/
-
this is test of Streaming operations-----countByWindow
-
*/
-
Logger.getLogger(
"org.apache.spark").setLevel(Level.ERROR)
-
Logger.getLogger(
"org.eclipse.jetty.Server").setLevel(Level.OFF)
-
-
val conf =
new SparkConf().setAppName(
"the reduceByWindow operation of SparK Streaming").setMaster(
"local[2]")
-
val sc =
new SparkContext(conf)
-
val ssc =
new StreamingContext(sc,Seconds(
2))
-
//set the Checkpoint directory
-
ssc.checkpoint(
"/Res")
-
-
//get the socket Streaming data
-
val socketStreaming = ssc.socketTextStream(
"master",
9999)
-
-
val data = socketStreaming.countByWindow(Seconds(
6),Seconds(
2))
-
-
-
println(
"countByWindow: count the number of elements")
-
data.print()
-
-
-
ssc.start()
-
ssc.awaitTermination()
-
-
-
}
-
}
——————————– countByValueAndWindow————-
-
/
-
输入 窗口长度、滑动时间、RDD分区数(默认分区是等于并行度)
-
@param windowDuration width of the window; must be a multiple of this DStream's
-
* batching interval
-
* @param slideDuration sliding interval of the window (i.e., the interval after which
-
* the new DStream will generate RDDs); must be a multiple of this
-
* DStream's batching interval
-
* @param numPartitions number of partitions of each RDD in the new DStream.
-
/
-
def countByValueAndWindow(
-
windowDuration: Duration,
-
slideDuration: Duration,
-
numPartitions: Int = ssc.sc.defaultParallelism)
-
(implicit ord: Ordering[T] = )
-
: DStream[
(T, Long)] = ssc.withScope {
-
this.map((_,
1L)).reduceByKeyAndWindow(
-
(x: Long, y: Long) => x + y,
-
(x: Long, y: Long) => x - y,
-
windowDuration,
-
slideDuration,
-
numPartitions,
-
(x: (T, Long)) => x._2 !=
0L
-
)
-
}
-
import org.apache.log4j.{Level, Logger}
-
import org.apache.spark.streaming.{Seconds, StreamingContext}
-
import org.apache.spark.{SparkConf, SparkContext}
-
-
/
-
Created by root on 6/23/16.
-
/
-
object countByValueAndWindow {
-
def main(args: Array[String]) {
-
/*
-
* this is test of Streaming operations-----countByValueAndWindow
-
*/
-
Logger.getLogger(
"org.apache.spark").setLevel(Level.ERROR)
-
Logger.getLogger(
"org.eclipse.jetty.Server").setLevel(Level.OFF)
-
-
val conf =
new SparkConf().setAppName(
"the reduceByWindow operation of SparK Streaming").setMaster(
"local[2]")
-
val sc =
new SparkContext(conf)
-
val ssc =
new StreamingContext(sc,Seconds(
2))
-
//set the Checkpoint directory
-
ssc.checkpoint(
"/Res")
-
-
//get the socket Streaming data
-
val socketStreaming = ssc.socketTextStream(
"master",
9999)
-
-
val data = socketStreaming.countByValueAndWindow(Seconds(
6),Seconds(
2))
-
-
-
println(
"countByWindow: count the number of elements")
-
data.print()
-
-
-
ssc.start()
-
ssc.awaitTermination()
-
}
-
-
}
附录
链接:http://pan.baidu.com/s/1slkqwBb 密码:d92r