sklearn中填补缺失值的方法

from sklearn.preprocessing import Imputer

 

填补缺失值:sklearn.preprocessing.Imputer(missing_values=’NaN’, strategy=’mean’, axis=0, verbose=0, copy=True)

主要参数说明:

missing_values:缺失值,可以为整数或NaN(缺失值numpy.nan用字符串‘NaN’表示),默认为NaN

strategy:替换策略,字符串,默认用均值‘mean’替换

①若为mean时,用特征列的均值替换

②若为median时,用特征列的中位数替换

③若为most_frequent时,用特征列的众数替换

axis:指定轴数,默认axis=0代表列,axis=1代表行

copy:设置为True代表不在原数据集上修改,设置为False时,就地修改,存在如下情况时,即使设置为False时,也不会就地修改

 

你可能感兴趣的:(Python学习,机器学习算法)