算法导论-第23章-最小生成树:Kruskal算法(基于按秩合并、路径压缩的不相交集合)C++实现

#include 
#include 
#include 
using namespace std;

static char elements_index{ 'a' };
using P = pair;
using PP = pair;

struct Element {
	char index{ elements_index++ };
	int rank{ 0 };
	Element* parent{ this };
};


Element* FIND_SET(Element* x) {
	if (x != x->parent) {
		x->parent = FIND_SET(x->parent);
	}
	return x->parent;
}

void LINK(Element* x, Element* y) {
	if (x->rank > y->rank) {
		y->parent = x;
	}
	else {
		x->parent = y;
		if (x->rank == y->rank) {
			y->rank++;
		}
	}
}

void UNION(Element* x, Element* y) {
	LINK(FIND_SET(x), FIND_SET(y));
}

vector

MST_KRUSKAL(vector& v, Element* E) { vector

A{}; for (auto edge : v) { if (FIND_SET(&E[edge.first.first - 'a']) != FIND_SET(&E[edge.first.second - 'a'])) { A.push_back({ edge.first.first, edge.first.second }); UNION(&E[edge.first.first - 'a'], &E[edge.first.second - 'a']); } } return A; } int main(int argc, char* argv[]) { size_t vertex_size{}; cout << "please input the numbers of vertex :" << endl; cin >> vertex_size; vector v{}; char v0{}; char v1{}; int weight{}; cout << "please input the edge as : v0 v1 weight( end up with 0 0 0 )" << endl; while (true) { cout << "edge :" << endl; cin >> v0 >> v1 >> weight; if (v0 == '0' || v1 == '0' || weight == 0) { break; } P p{ v0, v1 }; PP pp{ p, weight }; v.push_back(pp); } sort(v.begin(), v.end(), [](const PP& x, const PP& y){ return x.second < y.second; }); Element* E = new Element[vertex_size]{}; vector

result = MST_KRUSKAL(v, E); cout << "MST has edges as follow :" << endl; for (auto a : result) { cout << a.first << " " << a.second << endl; } delete[]E; return 0; }


你可能感兴趣的:(算法)