源码笔记,专注于Java后端系列框架的源码分析。关注【源码笔记】公众号,第一时间接收最新源码分析文章更新。
由于CLH锁是一种自旋锁,那么我们先来看看自旋锁是什么?
自旋锁说白了也是一种互斥锁,只不过没有抢到锁的线程会一直自旋等待锁的释放,处于busy-waiting的状态,此时等待锁的线程不会进入休眠状态,而是一直忙等待浪费CPU周期。因此自旋锁适用于锁占用时间短的场合。
这里谈到了自旋锁,那么我们也顺便说下互斥锁。这里的互斥锁说的是传统意义的互斥锁,就是多个线程并发竞争锁的时候,没有抢到锁的线程会进入休眠状态即sleep-waiting,当锁被释放的时候,处于休眠状态的一个线程会再次获取到锁。缺点就是这一些列过程需要线程切换,需要执行很多CPU指令,同样需要时间。如果CPU执行线程切换的时间比锁占用的时间还长,那么可能还不如使用自旋锁。因此互斥锁适用于锁占用时间长的场合。
CLH锁其实就是一种是基于逻辑队列非线程饥饿的一种自旋公平锁,由于是 Craig、Landin 和 Hagersten三位大佬的发明,因此命名为CLH锁。
CLH锁原理如下:
这么说肯定很抽象,有些小伙伴可能不理解,没关系,我们心中可以有个概念即可,后面我们会一步一图来彻彻底底把CLH锁弄明白。
好了,前面我们对CLH锁有了一个概念后,那么我们为什么要学习CLH锁呢?
研究过AQS源码的小伙伴们应该知道,AQS是JUC的核心,而CLH锁又是AQS的基础,说核心也不为过,因为AQS就是用了变种的CLH锁。如果要学好Java并发编程,那么必定要学好JUC;学好JUC,必定要先学好AQS;学好AQS,那么必定先学好CLH。因此,这就是我们为什么要学习CLH锁的原因。
那么,下面我们先来看CLH锁实现代码,然后通过一步一图来详解CLH锁。
// CLHLock.java
public class CLHLock {
/**
* CLH锁节点
*/
private static class CLHNode {
// 锁状态:默认为false,表示线程没有获取到锁;true表示线程获取到锁或正在等待
// 为了保证locked状态是线程间可见的,因此用volatile关键字修饰
volatile boolean locked = false;
}
// 尾结点,总是指向最后一个CLHNode节点
// 【注意】这里用了java的原子系列之AtomicReference,能保证原子更新
private final AtomicReference<CLHNode> tailNode;
// 当前节点的前继节点
private final ThreadLocal<CLHNode> predNode;
// 当前节点
private final ThreadLocal<CLHNode> curNode;
// CLHLock构造函数,用于新建CLH锁节点时做一些初始化逻辑
public CLHLock() {
// 初始化时尾结点指向一个空的CLH节点
tailNode = new AtomicReference<>(new CLHNode());
// 初始化当前的CLH节点
curNode = new ThreadLocal() {
@Override
protected CLHNode initialValue() {
return new CLHNode();
}
};
// 初始化前继节点,注意此时前继节点没有存储CLHNode对象,存储的是null
predNode = new ThreadLocal();
}
/**
* 获取锁
*/
public void lock() {
// 取出当前线程ThreadLocal存储的当前节点,初始化值总是一个新建的CLHNode,locked状态为false。
CLHNode currNode = curNode.get();
// 此时把lock状态置为true,表示一个有效状态,
// 即获取到了锁或正在等待锁的状态
currNode.locked = true;
// 当一个线程到来时,总是将尾结点取出来赋值给当前线程的前继节点;
// 然后再把当前线程的当前节点赋值给尾节点
// 【注意】在多线程并发情况下,这里通过AtomicReference类能防止并发问题
// 【注意】哪个线程先执行到这里就会先执行predNode.set(preNode);语句,因此构建了一条逻辑线程等待链
// 这条链避免了线程饥饿现象发生
CLHNode preNode = tailNode.getAndSet(currNode);
// 将刚获取的尾结点(前一线程的当前节点)付给当前线程的前继节点ThreadLocal
// 【思考】这句代码也可以去掉吗,如果去掉有影响吗?
predNode.set(preNode);
// 【1】若前继节点的locked状态为false,则表示获取到了锁,不用自旋等待;
// 【2】若前继节点的locked状态为true,则表示前一线程获取到了锁或者正在等待,自旋等待
while (preNode.locked) {
System.out.println("线程" + Thread.currentThread().getName() + "没能获取到锁,进行自旋等待。。。");
}
// 能执行到这里,说明当前线程获取到了锁
System.out.println("线程" + Thread.currentThread().getName() + "获取到了锁!!!");
}
/**
* 释放锁
*/
public void unLock() {
// 获取当前线程的当前节点
CLHNode node = curNode.get();
// 进行解锁操作
// 这里将locked至为false,此时执行了lock方法正在自旋等待的后继节点将会获取到锁
// 【注意】而不是所有正在自旋等待的线程去并发竞争锁
node.locked = false;
System.out.println("线程" + Thread.currentThread().getName() + "释放了锁!!!");
// 小伙伴们可以思考下,下面两句代码的作用是什么??
CLHNode newCurNode = new CLHNode();
curNode.set(newCurNode);
// 【优化】能提高GC效率和节省内存空间,请思考:这是为什么?
// curNode.set(predNode.get());
}
}
通过上面代码,我们缕一缕CLH锁的初始化逻辑先:
CLHNode
节点,里面有一个locked
属性,表示线程线程是否获得锁,默认为false
。false
表示线程没有获取到锁或已经释放锁;true
表示线程获取到了锁或者正在自旋等待。注意,为了保证
locked
属性线程间可见,该属性被volatile
修饰。
CLHLock
有三个重要的成员变量尾节点指针tailNode
,当前线程的前继节点preNode
和当前节点curNode
。其中tailNode
是AtomicReference
类型,目的是为了保证尾节点的线程安全性;此外,preNode
和curNode
都是ThreadLocal
类型即线程本地变量类型,用来保存每个线程的前继CLHNode
和当前CLHNode
节点。CLHLock
对象时,此时会执行构造函数里面的初始化逻辑。此时给尾指针tailNode
和当前节点curNode
初始化一个locked
状态为false
的CLHNode
节点,此时前继节点preNode
存储的是null
。我们再来看看CLH锁的加锁过程,下面再贴一遍加锁lock
方法的代码:
// CLHLock.java
/**
* 获取锁
*/
public void lock() {
// 取出当前线程ThreadLocal存储的当前节点,初始化值总是一个新建的CLHNode,locked状态为false。
CLHNode currNode = curNode.get();
// 此时把lock状态置为true,表示一个有效状态,
// 即获取到了锁或正在等待锁的状态
currNode.locked = true;
// 当一个线程到来时,总是将尾结点取出来赋值给当前线程的前继节点;
// 然后再把当前线程的当前节点赋值给尾节点
// 【注意】在多线程并发情况下,这里通过AtomicReference类能防止并发问题
// 【注意】哪个线程先执行到这里就会先执行predNode.set(preNode);语句,因此构建了一条逻辑线程等待链
// 这条链避免了线程饥饿现象发生
CLHNode preNode = tailNode.getAndSet(currNode);
// 将刚获取的尾结点(前一线程的当前节点)付给当前线程的前继节点ThreadLocal
// 【思考】这句代码也可以去掉吗,如果去掉有影响吗?
predNode.set(preNode);
// 【1】若前继节点的locked状态为false,则表示获取到了锁,不用自旋等待;
// 【2】若前继节点的locked状态为true,则表示前一线程获取到了锁或者正在等待,自旋等待
while (preNode.locked) {
try {
Thread.sleep(1000);
} catch (Exception e) {
}
System.out.println("线程" + Thread.currentThread().getName() + "没能获取到锁,进行自旋等待。。。");
}
// 能执行到这里,说明当前线程获取到了锁
System.out.println("线程" + Thread.currentThread().getName() + "获取到了锁!!!");
}
虽然代码的注释已经很详细,我们还是缕一缕线程加锁的过程:
curNode
,这里每次获取的CLHNode
节点的locked
状态都为false
;CLHNode
节点的locked
状态赋值为true
,表示当前线程的一种有效状态,即获取到了锁或正在等待锁的状态;tailNode
的总是指向了前一个线程的CLHNode
节点,因此这里利用尾指针tailNode
取出前一个线程的CLHNode
节点,然后赋值给当前线程的前继节点predNode
,并且将尾指针重新指向最后一个节点即当前线程的当前CLHNode
节点,以便下一个线程到来时使用;locked
状态判断,若locked
为false
,则说明前一个线程释放了锁,当前线程即可获得锁,不用自旋等待;若前继节点的locked状态为true,则表示前一线程获取到了锁或者正在等待,自旋等待。为了更通俗易懂,我们用一个图里来说明。
**假如有这么一个场景:**有四个并发线程同时启动执行lock操作,假如四个线程的实际执行顺序为:threadA<–threadB<–threadC<–threadD
第一步,线程A过来,执行了lock操作,获得了锁,此时locked
状态为true
,如下图:
第二步,线程B过来,执行了lock操作,由于线程A还未释放锁,此时自旋等待,locked
状态也为true
,如下图:
第三步,线程C过来,执行了lock操作,由于线程B处于自旋等待,此时线程C也自旋等待(因此CLH锁是公平锁),locked
状态也为true
,如下图:
第四步,线程D过来,执行了lock操作,由于线程C处于自旋等待,此时线程D也自旋等待,locked
状态也为true
,如下图:
这就是多个线程并发加锁的一个过程图解,当前线程只要判断前一线程的locked
状态如果是true
,那么则说明前一线程要么拿到了锁,要么也处于自旋等待状态,所以自己也要自旋等待。而尾指针tailNode
总是指向最后一个线程的CLHNode
节点。
前面用图解结合代码说明了CLH锁的加锁过程,那么,CLH锁的释放锁的过程又是怎样的呢?
同样,我们先贴下释放锁的代码:
// CLHLock.java
/**
* 释放锁
*/
public void unLock() {
// 获取当前线程的当前节点
CLHNode node = curNode.get();
// 进行解锁操作
// 这里将locked至为false,此时执行了lock方法正在自旋等待的后继节点将会获取到锁
// 【注意】而不是所有正在自旋等待的线程去并发竞争锁
node.locked = false;
System.out.println("线程" + Thread.currentThread().getName() + "释放了锁!!!");
// 小伙伴们可以思考下,下面两句代码的作用是什么???
CLHNode newCurNode = new CLHNode();
curNode.set(newCurNode);
// 【优化】能提高GC效率和节省内存空间,请思考:这是为什么?
// curNode.set(predNode.get());
}
可以看到释放CLH锁的过程代码比加锁简单多了,下面同样缕一缕:
CLHNode
节点,同时这个CLHNode
节点被后面一个线程的preNode
变量指向着;locked
状态置为false
即释放了锁;注意:
locked
因为被volitile
关键字修饰,此时后面自旋等待的线程的局部变量preNode.locked
也为false
,因此后面自旋等待的线程结束while
循环即结束自旋等待,此时也获取到了锁。这一步骤也在异步进行着。
CLHNode
。思考:这一步看上去是多余的,其实并不是。请思考下为什么这么做?我们后续会继续深入讲解。
我们还是用一个图来说说明CLH锁释放锁的场景,接着前面四个线程加锁的场景,假如这四个线程加锁后,线程A开始释放锁,此时线程B获取到锁,结束自旋等待,然后线程C和线程D仍然自旋等待,如下图:
以此类推,线程B释放锁的过程也跟上图类似,这里不再赘述。
在前面4.3小节讲到释放锁unLock
方法中有下面两句代码:
CLHNode newCurNode = new CLHNode();
curNode.set(newCurNode);
这两句代码的作用是什么?这里先直接说结果:若没有这两句代码,若同个线程加锁释放锁后,然后再次执行加锁操作,这个线程就会陷入自旋等待的状态。这是为啥,可能有些下伙伴也没明白,劲越也是搞了蛮久才搞明白,嘿嘿。
下面我们同样通过一步一图的形式来分析这两句代码的作用。
假如有下面这样一个场景:线程A获取到了锁,然后释放锁,然后再次获取锁。
上图的加锁操作中,线程A的当前CLHNode
节点的locked
状态被置为true
;然后tailNode
指针指向了当前线程的当前节点;最后因为前继节点的locked
状态为false
,不用自旋等待,因此获得了锁。
上图的释放锁操作中,线程A的当前CLHNode
节点的locked
状态被置为false
,表示释放了锁;然后新建了一个新的CLHNode
节点newCurNode
,线程A的当前节点线程本地变量值重新指向了newCurNode
节点对象。
第三步: 线程A再次执行lock操作,重新获得锁,如下图:
上图的再次获取锁操作中,首先将线程A的当前CLHNode
节点的locked
状态置为true
;然后首先通过tailNode
尾指针获取到前继节点即第一,二步中的curNode
对象,然后线程A的前继节点线程本地变量的值重新指向了重新指向了curNode
对象;然后tailNode
尾指针重新指向了新创建的CLHNode
节点newCurNode
对象。最后因为前继节点的locked
状态为false
,不用自旋等待,因此获得了锁。
扩展: 注意到以上图片的
preNode
对象此时没有任何引用,所以当下一次会被GC掉。前面是通过每次执行unLock
操作都新建一个新的CLHNode
节点对象newCurNode
,然后让线程A的当前节点线程本地变量值重新指向newCurNode
。因此这里完全不用重新创建新的CLHNode
节点对象,可以通过curNode.set(predNode.get());
这句代码进行优化,提高GC效率和节省内存空间。
现在我们把unLock
方法的CLHNode newCurNode = new CLHNode();
和curNode.set(newCurNode);
这两句代码注释掉,变成了下面这样:
// CLHLock.java
public void unLock() {
CLHNode node = curNode.get();
node.locked = false;
System.out.println("线程" + Thread.currentThread().getName() + "释放了锁!!!");
/*CLHNode newCurNode = new CLHNode();
curNode.set(newCurNode);*/
}
那么结果就是线程A通过加锁,释放锁后,再次获取锁时就会陷入自旋等待的状态,这又是为什么呢?我们下面来详细分析。
上图的加锁操作中,线程A的当前CLHNode
节点的locked
状态被置为true
;然后tailNode
指针指向了当前线程的当前节点;最后因为前继节点的locked
状态为false
,不用自旋等待,因此获得了锁。这一步没有什么异常。
第二步: 线程A执行了unLock操作,释放了锁,如下图:
现在已经把unLock
方法的CLHNode newCurNode = new CLHNode();
和curNode.set(newCurNode);
这两句代码注释掉了,因此上图的变化就是线程A的当前CLHNode
节点的locked
状态置为false
即!可。
第三步: 线程A再次执行lock操作,此时会陷入一直自旋等待的状态,如下图:
通过上图对线程A再次获取锁的lock
方法的每一句代码进行分析,得知虽然第二步中将线程A的当前CLHNode
的locked
状态置为false
了,但是在第三步线程A再次获取锁的过程中,将当前CLHNode
的locked
状态又置为true
了,且尾指针tailNode
指向的依然还是线程A的当前当前CLHNode
节点。又因为每次都是将尾指针tailNode
指向的CLHNode
节点取出来给当前线程的前继CLHNode
节点,之后执行while(predNode.locked) {}
语句时,此时因为predNode.locked = true
,因此线程A就永远自旋等待了。
下面我们通过一个Demo来测试前面代码实现的CLH锁是否能正常工作,直接上测试代码:
// CLHLockTest.java
/**
* 用来测试CLHLocke生不生效
*
* 定义一个静态成员变量cnt,然后开10个线程跑起来,看能是否会有线程安全问题
*/
public class CLHLockTest {
private static int cnt = 0;
public static void main(String[] args) throws Exception {
final CLHLock lock = new CLHLock();
for (int i = 0; i < 100; i++) {
new Thread(() -> {
lock.lock();
cnt++;
lock.unLock();
}).start();
}
// 让main线程休眠10秒,确保其他线程全部执行完
Thread.sleep(10000);
System.out.println();
System.out.println("cnt----------->>>" + cnt);
}
}
PS: 这里为了截图全面,因此只开了10个线程。经过劲越测试,开100个线程,1000个线程也不会存在线程安全问题。
好了,前面我们通过多图详细说明了CLH锁的原理与实现,那么我们再对前面的知识进行一次小结:
公众号【源码笔记】,专注于Java后端系列框架的源码分析。