http://www.cnblogs.com/wenruo/p/5264235.html
KM算法用来求二分图最大权完美匹配。
本文配合该博文服用更佳:趣写算法系列之--匈牙利算法
现在有N男N女,男生和女生每两个人之间有好感度,我们希望把他们两两配对,并且最后希望好感度和最大。
怎么选择最优的配对方法呢?
首先,每个妹子会有一个期望值,就是与她有好感度的男生中最大的好感度。男生呢,期望值为0,就是,,,只要有一个妹子就可以啦,不挑~~
这样,我们把每个人的期望值标出来。
然后,开始配对。配对方法:男女两人的期望和要等于两人之间的好感度。每一轮匹配,无论是否成功,每个男生只会被尝试匹配一次!
匹配过程:
第一轮匹配:
============================
女1:选择了男3(此时女1--男3)
女2:也想选择男3,男3已经在该轮匹配过了,女2无其他合适选择,匹配失败。
===============================
这一轮参与匹配的人有:女1,女2,男3。
怎么办???很容易想到的,这两个女生只能降低一下期望值了,降低多少呢?两个妹子都在能选择的其他人中,也就是没参与这轮匹配的男生中,选择一个期望值降低的尽可能小的人。也就是再其他人中选择一个最合适的。
比如:女1选择男1,期望值要降低1。 女2选择男1,期望值要降低1。 女2选择男2,期望值要降低2。
于是,只要期望值降低1,就有妹子可能选择其他人。所以妹子们的期望值要降低1点。
同时,刚才被抢的男生此时非常得意,因为有妹子来抢他,与是他的期望值提高了1点(就是同妹子们降低的期望值相同)。
与是期望值变成这样(当然,不参与刚才匹配过程的人期望值不变)
第二轮匹配:
============================
(女1已经在第一轮匹配完成了,女1--男3)
女2:选择男1。(此时女1--男3,女2--男1)
女3:选择男3,男3已经有女1了,于是女1尝试换人,换到男1,男1已经被在这一轮被尝试匹配过了。于是女1换人失败,这一轮匹配失败。
============================
再一次改变期望值。
这次三个女生都参与了匹配,男1和男3参与匹配。女生尝试换人,于是期望值降低1。参与匹配的男生期望值增加1。
第三轮匹配:
============================
上一轮女1和女2是匹配完成的。(此时女1--男3,女2--男1)
女3:选择男3,男3的当前对象女1尝试换人,换到了男1,但是男1已经有女2了,于是女2再尝试换人,换到了男2,于是女2--男2,女1--男1,女3--男3
匹配成功!!!撒花~~
============================
虽然不停换人的过程听起来很麻烦,但其实整个是个递归的过程,实现起来比较简单。比较复杂的部分就是期望值的改变,但是可以在递归匹配的过程中顺带求出来。
模板(带详细注释)(入门题:HDU2255
#include#include #include using namespace std; const int MAXN = 305; const int INF = 0x3f3f3f3f; int love[MAXN][MAXN]; // 记录每个妹子和每个男生的好感度 int ex_girl[MAXN]; // 每个妹子的期望值 int ex_boy[MAXN]; // 每个男生的期望值 bool vis_girl[MAXN]; // 记录每一轮匹配匹配过的女生 bool vis_boy[MAXN]; // 记录每一轮匹配匹配过的男生 int match[MAXN]; // 记录每个男生匹配到的妹子 如果没有则为-1 int slack[MAXN]; // 记录每个汉子如果能被妹子倾心最少还需要多少期望值 int N; bool dfs(int girl) { vis_girl[girl] = true; for (int boy = 0; boy < N; ++boy) { if (vis_boy[boy]) continue; // 每一轮匹配 每个男生只尝试一次 int gap = ex_girl[girl] + ex_boy[boy] - love[girl][boy]; if (gap == 0) { // 如果符合要求 vis_boy[boy] = true; if (match[boy] == -1 || dfs( match[boy] )) { // 找到一个没有匹配的男生 或者该男生的妹子可以找到其他人 match[boy] = girl; return true; } } else { slack[boy] = min(slack[boy], gap); // slack 可以理解为该男生要得到女生的倾心 还需多少期望值 取最小值 备胎的样子【捂脸 } } return false; } int KM() { memset(match, -1, sizeof match); // 初始每个男生都没有匹配的女生 memset(ex_boy, 0, sizeof ex_boy); // 初始每个男生的期望值为0 // 每个女生的初始期望值是与她相连的男生最大的好感度 for (int i = 0; i < N; ++i) { ex_girl[i] = love[i][0]; for (int j = 1; j < N; ++j) { ex_girl[i] = max(ex_girl[i], love[i][j]); } } // 尝试为每一个女生解决归宿问题 for (int i = 0; i < N; ++i) { fill(slack, slack + N, INF); // 因为要取最小值 初始化为无穷大 while (1) { // 为每个女生解决归宿问题的方法是 :如果找不到就降低期望值,直到找到为止 // 记录每轮匹配中男生女生是否被尝试匹配过 memset(vis_girl, false, sizeof vis_girl); memset(vis_boy, false, sizeof vis_boy); if (dfs(i)) break; // 找到归宿 退出 // 如果不能找到 就降低期望值 // 最小可降低的期望值 int d = INF; for (int j = 0; j < N; ++j) if (!vis_boy[j]) d = min(d, slack[j]); for (int j = 0; j < N; ++j) { // 所有访问过的女生降低期望值 if (vis_girl[j]) ex_girl[j] -= d; // 所有访问过的男生增加期望值 if (vis_boy[j]) ex_boy[j] += d; // 没有访问过的boy 因为girl们的期望值降低,距离得到女生倾心又进了一步! else slack[j] -= d; } } } // 匹配完成 求出所有配对的好感度的和 int res = 0; for (int i = 0; i < N; ++i) res += love[ match[i] ][i]; return res; } int main() { while (~scanf("%d", &N)) { for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) scanf("%d", &love[i][j]); printf("%d\n", KM()); } return 0; }