- NLP论文速读|chameleon:一个即插即用的组合推理模块Plug-and-Play Compositional Reasoning with Large Language Models
Power2024666
NLP论文速读自然语言处理人工智能机器学习深度学习nlp语言模型
论文速读|Chameleon:Plug-and-PlayCompositionalReasoningwithLargeLanguageModels论文信息:简介:该论文介绍了一个名为Chameleon的人工智能系统,旨在解决大型语言模型(LLMs)在处理复杂推理任务时存在的固有限制,例如无法访问最新信息、使用外部工具以及执行精确的数学和逻辑推理。Chameleon通过插入即用模块增强LLMs,使其
- redis秒杀之lua脚本
stand_forever
redisredislua数据库
Lua脚本核心原理:1.单线程模型:Redis使用单线程处理命令,所有命令按顺序执行。Lua脚本会被视为一个整体任务,执行期间不会被其他命令中断。2.原子性保证:将库存检查、扣减、订单记录等多个操作放在一个脚本中,会连续执行,中间不会有其他客户端操作插入。保证了脚本的原子性。3.无需锁机制:由于Redis的单线程特性,Lua脚本天然避免了并发冲突,无需额外加锁。实现流程:1.首先库存预热:活动开始
- 李开复:AI 2.0 时代的意义
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
人工智能,深度学习,Transformer,大模型,通用人工智能,AI2.0,伦理问题,未来趋势1.背景介绍人工智能(AI)技术近年来发展迅速,从最初的局限于特定领域的应用,逐渐发展到能够处理更复杂的任务,甚至展现出一些类似人类智能的能力。2010年以来,深度学习技术的兴起,特别是Transformer模型的出现,为AI发展带来了新的突破。这些模型能够处理海量数据,学习复杂的模式,并在自然语言处理
- 如何设计一个社交平台的关注/粉丝系统?一位8年Java开发者的架构心路
天天摸鱼的java工程师
java架构开发语言
如何设计一个社交平台的关注/粉丝系统?——一位8年Java开发者的架构心路当你的社交平台面临百万用户实时互动,如何确保关注操作毫秒级响应?如何保证粉丝列表的实时性和一致性?这个看似基础的功能背后,隐藏着读写扩散、数据一致性、热点用户等架构难题。本文将带你从业务模型到代码落地,构建一个支撑千万级关系的社交系统。一、业务场景与核心挑战典型关注业务流程:未关注已关注用户A关注用户B关系检查写入关注关系更
- 《深入理解 Python 的对象构造机制:__new__ 与 __init__ 的本质区别与实战应用》
清水白石008
开发语言学习笔记课程教程python开发语言
《深入理解Python的对象构造机制:new与init的本质区别与实战应用》引言:对象的诞生之谜在Python的面向对象编程中,我们习惯于使用__init__方法来初始化对象。但你是否曾注意到,还有一个鲜为人知却至关重要的魔法方法——__new__?它是对象构造过程的起点,掌控着类实例的真正创建。理解__new__与__init__的区别,不仅能帮助你掌握Python的对象模型,还能在构建不可变类
- Django基础(七)———模型常用Field以及Meta配置
前言上篇文章给大家介绍类Django和MySQL数据库的综合使用,以及框架中的ORM模型。这篇文章将继续讲述ORM模型当中常用的Field以及Meta配置一、模型常用Field在Django中,定义了一些Field来与数据库表中的字段类型来进行映射。以下将介绍那些常用的字段类型。1.AutoField映射到数据库中是int类型,可以有自动增长的特性。一般不需要使用这个类型,如果不指定主键,那么模型
- 基于定制开发开源AI智能名片S2B2C商城小程序源码的搜索框个性化推荐机制研究
摘要:本文聚焦于定制开发开源AI智能名片S2B2C商城小程序源码场景下的搜索框个性化推荐机制。通过分析搜索框作为信息流槽位的产品形态特性,结合开源AI大模型与S2B2C模式的技术融合优势,提出基于用户强兴趣/即时兴趣的动态推荐策略。研究揭示了定制化开发在破解传统搜索框静态局限中的关键作用,并通过实证案例验证了该机制对提升用户转化率与平台GMV的显著效果,为新零售场景下的智能推荐系统设计提供了理论依
- 【重磅】瑞数信息蝉联IDC中国AI赋能私有云WAF市场份额Top2!
科技云报道
人工智能
近日,国际数据公司IDC正式发布《IDC中国AI赋能的Web应用防火墙硬件市场份额,2024:合规需求带动市场反弹,LLM-WAF成为未来市场新增量》和《IDC中国AI赋能的云Web应用防火墙市场份额,2024:大模型全行业渗透,LLM-WAF带来市场新增量》系列报告。报告针对2024年中国Web应用防火墙市场的规模、增长速度、主要玩家、市场与技术的发展趋势等内容进行了详细研究。报告显示,2024
- RAG 助力教育个性化:重塑学习体验的科技引擎
hy098543
学习科技
一、引言1.1研究背景与动机随着自然语言处理(NLP)技术的飞速发展,大语言模型(LLM)在众多任务中展现出了强大的能力,如文本生成、问答系统和机器翻译等。然而,传统的大语言模型在知识存储和更新方面存在一定的局限性。一方面,模型的知识主要依赖于预训练阶段所接触的数据,这导致其知识更新滞后,难以应对快速变化的现实世界信息。例如,对于一些新出现的事件、技术或研究成果,模型可能无法及时给出准确的信息。另
- 重塑未来:AI如何重新定义全栈开发
熊猫钓鱼>_>
人工智能
在传统认知中,全栈开发者被誉为技术界的“全能选手”。——他们需要精通前端界面构建(HTML/CSS/JavaScript)、后端业务逻辑实现(Python/Java/Node.js)、数据库设计优化(MySQL/MongoDB)以及服务器部署运维(Linux/Docker)。这种“一人包打天下”的能力模型长期被视为高效开发的黄金标准,尤其受到创业公司和小型团队的青睐,因为它能大幅减少沟通成本,加速
- IDC权威认可:瑞数信息双项入选《中国大模型安全保护市场概览》
科技云报道
安全
近日,国际数据公司IDC正式发布了《中国大模型安全保护市场概览,2025:全方位安全检测与防护构建可信AI》报告。本次报告中IDC结合全球统一定义以及中国市场特色,将中国大模型安全保护市场划分为7个细分领域,并通过对中国大模型安全保护市场的广泛和深入的调研,对各细分领域的代表厂商进行了全面梳理。瑞数信息凭借在AI领域的深厚技术积累与前瞻布局,入选中国大模型安全保护市场“保护大模型接口”与“保护大模
- 模型优化-------模型压缩
AI扶我青云志
人工智能模型优化
模型压缩是一种优化技术,目标是在尽量保留模型性能的前提下,减少模型的体积、计算成本和内存占用。特别适合模型部署在边缘设备、移动端、嵌入式系统等资源受限环境中。其中,“剪枝(Pruning)、量化(Quantization)和知识蒸馏(KnowledgeDistillation)”是最常用且研究最深入的三种方法。一、剪枝(Pruning)原理:剪枝的核心思想是去掉对模型输出影响较小的参数或结构,使得
- BERT模型架构
大多_C
bert人工智能深度学习
BertModel((embeddings):BertEmbeddings((word_embeddings):Embedding(30522,768,padding_idx=0)(position_embeddings):Embedding(512,768)(token_type_embeddings):Embedding(2,768)(LayerNorm):LayerNorm((768,),e
- 云服务器环境下Linux系统epoll机制与高并发服务器优化实践
cpsvps_net
服务器linux运维
在当今云计算时代,云已成为企业部署高并发服务的首选平台。本文将深入探讨Linux系统核心的epoll机制如何赋能云环境下的高并发服务器,解析其底层工作原理与性能优势,并对比传统IO复用模型的差异,帮助开发者构建更高效的云端服务架构。云服务器环境下Linux系统epoll机制与高并发服务器优化实践一、云服务器环境对高并发服务的特殊需求在云服务器环境中,资源弹性扩展的特性使得高并发服务成为可能,但同时
- Unity UI的未来之路:从UGUI到UI Toolkit的架构演进与特性剖析(1)
伽蓝_游戏
unityui架构游戏引擎游戏c#.net
第一章:全面的特性对决——一份来自官方的详细评测报告在Unity引擎的UI开发领域,开发者主要面对两种核心技术选型:成熟且深度集成的UGUI(UnityUI)系统,以及代表未来方向、以性能和现代工作流为设计目标的UIToolkit。两者在底层架构、工作流程、性能模型和功能覆盖上存在本质差异。本章将基于详细的功能特性对比,对二者进行深入的技术分析,为开发者在项目初期做出合理的技术选型提供依据。核心差
- 微服务架构监控:四大黄金指标解析
AI云原生与云计算技术学院
架构微服务云原生ai
微服务架构监控:四大黄金指标解析关键词:微服务架构、监控体系、四大黄金指标、SRE、延迟、流量、错误、饱和度摘要:本文深入解析微服务架构监控的核心方法论——四大黄金指标(延迟、流量、错误、饱和度),基于GoogleSRE最佳实践,结合具体技术实现与数学模型,阐述指标设计原理、数据采集方法、可视化实践及异常诊断逻辑。通过完整的项目实战案例,演示如何构建端到端监控体系,帮助技术团队建立可观测性基线,提
- verilator如何实现RTL的仿真(腾讯混元)
Verilator是一个用于将Verilog或SystemVerilogRTL(寄存器传输级)代码转换为C++或SystemC模型的工具,主要用于高性能的功能仿真和验证。它不是像ModelSim或VCS那样的传统事件驱动仿真器,而是通过静态编译的方式将RTL转换为可执行的C++代码,从而实现高效仿真。下面详细介绍Verilator实现RTL仿真的流程与实现细节。一、Verilator的基本工作流程
- GPU 之后,IMU 登场:AI 发展的下一次飞跃
你早晨醒来,手机上的大模型帮你写完邮件、翻译合同,却依旧不能帮你把厨房里洒掉的牛奶擦干。你戴上的AR眼镜知道“那里有杯子”,却抓不到它——AI会说不会做。是不是哪里少了一截?人工智能(AI)的发展历程中,我们见证了从简单的数据处理到复杂的语言生成能力的飞跃。然而,尽管AI在虚拟世界中表现出色,它在物理世界中的表现却相对滞后。为了填补这一空白,AI正在进入一个新的发展阶段:行动驱动时代。在本文中,我
- 阿里云天池-学习笔记(7.22)
2301_81822737
深度学习
概念的初步认识和学习一、损失函数损失函数是衡量模型预测值与真实值之间差异的一个量度,通过最小化这个差异来优化模型的参数。损失函数的选择直接影响到模型的训练效果和最终性能。二、one-hot编码one-hot编码使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候其中只有一位有效(即为1,其余为0)。具体来说,对于每个分类变量,都会为其分配一个唯一的二进制位,并使用该
- 借助零信任网格重塑分布式MCP与LLM访问:安全、灵活的下一代架构实践
码力金矿
机器学习深度学习人工智能人工智能自动化运维数据库mysqlpythonjava
在数字化转型的浪潮中,AI应用与分布式系统正在加速融合。传统架构中,MCP(模型上下文协议)服务与LLM(大语言模型)工具的部署常面临安全暴露、网络复杂性、跨防火墙通信等挑战。本文将结合零信任网格(ZTM,ZeroTrustMesh)与Flomesh技术,探索一种更安全、灵活的分布式架构方案,让MCP服务无需VPN或静态IP即可实现全球可访问,同时为LLM应用提供统一的安全层。一、传统分布式架构的
- 爆改YOLOv8 | 利用AFPN增加小目标检测层(替换小目标检测头)
1,本文介绍这篇文章的改进机制是利用新推出的渐近特征金字塔网络(AFPN)来优化yolov8的检测头,AFPN的核心是引入一种渐近的特征融合策略,将底层和高层的特征逐渐整合到目标检测过程中。这种方式有助于减小不同层次特征之间的语义差距,提高特征融合效果,使得检测模型能更好地适应不同层次的语义信息。关于AFPN的详细介绍可以看论文:https://arxiv.org/pdf/2306.15988.p
- 数据结构与算法-09贪心算法&动态规划
阿诚学java
数据结构与算法学习记录贪心算法动态规划ios
贪心算法&动态规划1贪心算法介绍贪心算法(GreedyAlgorithm)是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。贪心算法通常用于解决优化问题,如最小化成本、最大化收益等。然而,贪心算法并不总是能够得到全局最优解,但它具有直观、高效、易于实现等优点,因此在许多实际问题中得到了广泛应用。基本思想贪心算法总是从问题的某一个初始解出发。
- Java内存模型深度解析:栈、堆、方法区详解
wsj__WSJ
javajava
本文通过生动比喻和实战案例,帮你彻底掌握Java内存结构中栈内存、堆内存和方法区的核心原理与协作方式。一、为什么要区分三种内存?Java划分栈、堆、方法区是为了提高内存使用效率,不同数据有不同的生命周期和访问频率:数据类型类比场景存储位置生命周期临时数据(方法参数)便签纸栈内存方法执行期间对象实例常用文件夹堆内存对象存在期间类定义信息公司制度手册方法区程序运行期间就像高效的办公桌管理:栈内存:临时
- 初识TCP和UDP
F.LASH.
网络编程网络tcp/ipudplinuxarm开发
文章目录前言一、网络是什么?二、TCP和UDP的特点三、网络层协议四、Linux下网络命令以及网络配置总结前言本期主要分享的是网络的一些基本概念以及UDP相关通信的内容,希望各位小伙伴能够把接口使用起来!一、网络是什么?1.网络:主机间数据共享、数据收发2.协议:通信双方约定的一套标准3.国际标准OSI模型应用层传输数据表示层数据加密会话层建立会话链接传输层传输方式网络层数据路由数据链路层局域网通
- AI Agent开发学习系列 - langchain之memory(1):内存中的短时记忆
alex100
AIAgent学习人工智能langchainprompt语言模型python
内存中的短时记忆,在LangChain中通常指ConversationBufferMemory这类“对话缓冲记忆”工具。它的作用是:在内存中保存最近的对话历史,让大模型能理解上下文,实现连续对话。对话缓冲记忆”工具主要特点只保留最近的对话内容(如最近N轮),不会无限增长,节省内存和token。适合短对话、上下文关联不深的场景。支持多种变体,如窗口记忆(ConversationBufferWindo
- 如何构建FunASR的本地语音识别服务
FunASR简介FunASR是阿里巴巴达摩院开源的高性能语音识别工具包,支持离线识别和实时流式识别两种模式。其核心特点包括:支持多种语音任务:ASR(自动语音识别)、VAD(语音活动检测)、标点恢复、关键词检测等。提供预训练模型:覆盖中文、英文等多语言,支持不同场景(通用、会议、直播等)。支持多种部署方式:本地Python、Docker容器、ONNX推理优化等。开源地址:GitHub-FunASR
- 【论文蒸馏】Recent Advances in Speech Language Models: A Survey
Greener_Pat
论文蒸馏语言模型人工智能AudioLM
AbstractLLM蓬勃发展,但从交互的自然性上看语音大模型(SpeechLM)有巨大的发展空间。直接的方法是ASR(语音转文字)+LLM+TTS(文字转语音),但是这样有其固有的限制,而端到端的SpeechLM表现更好,本文及其方法论做了一个概览的综述1.Introduction大语言模型提供了强大的AI基础支架,在其它领域有着广泛应用。但交互上不自然,所以需要声学大模型。一种直接的实现方式是
- 基于LDA模型的经济金融政策文本研究与分析设计与实现,很详细
python编程狮
金融人工智能pythonLDA主题分析情感分析词云图文本挖掘
摘要经济金融政策文本的研究与分析对于理解国家经济发展方向和政策制定逻辑至关重要。近年来,随着信息技术的发展,基于文本的定量分析方法在经济金融领域得到广泛应用。LDA(LatentDirichletAllocation)作为一种典型的主题模型,能够有效地从大量政策文本中提取潜在的主题结构,帮助研究者理解和分析政策的核心内容和演变趋势。本研究基于LDA模型,对经济金融政策文本进行了系统的研究与分析。首
- 基于SVm和随机森林算法模型的中国黄金价格预测分析与研究
python编程狮
支持向量机算法随机森林python机器学习人工智能
摘要本研究基于回归模型,运用支持向量机(SVM)、决策树和随机森林算法,对中国黄金价格进行预测分析。通过历史黄金价格数据的分析和特征工程,建立了相应的预测模型,并利用SVM、决策树和随机森林算法进行训练和预测。首先,通过对黄金价格时间序列数据的探索性分析,发现黄金价格存在一定的趋势和季节性变化。随后,进行了数据预处理和特征选择,为建立准确的预测模型奠定了基础。分别使用SVM、决策树和随机森林算法建
- C++学习笔记day3
既白765
c++学习
继承:好处:减少重复代码语法:class子类:继承方式父类子类也称为派生类,父类也称为基类。继承中的对象模型:父类中所有的非静态成员都会被子类继承。利用开发人员命令提示工具查看对象模型:跳转盘符C:跳转文件路径cd具体路径下查看命名cl/d1reportSingleClassLayout类名文件名继承中的构造和析构顺序:先构造父类再构造子类先析构子类再析构父类继承中同名成员处理方式:访问子类同名成
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla