- AQ录制V1.7.8--录制工具安装与部署
你爱吃金坷垃吗
开源软件
文章目录一、AQ录制是什么?二、软件情况1.软件功能2.软件实测3.软是件安装配置三、下载地址一、AQ录制是什么?AQ录制软件是一款桌面录制软件,可以直播,录游戏,录网课,录教程,录素材,录课件,支持1080P全时长超清输出二、软件情况【软件功能】【录制】可以录制游戏高光时刻自动合并【视频编辑】可以对录制视频进行编辑【软件实测】【安装配置】下载安装包,解压后双击运行,出现安装向导界面,点击【Nex
- 如何使用 LangChain 组合提示符模板
GEAWfaacc
langchainpython
在现代AI应用中,构建灵活且易于重用的提示符(Prompt)是开发者的核心需求之一。LangChain提供了一种直观的方法来组合不同部分的提示,从而实现提示符模板的高效组合和再利用。本篇文章将通过几个具体的例子,带您了解如何在LangChain中进行提示符的组合。技术背景介绍LangChain是一个用于处理语言模型提示符的框架,它支持将字符串提示符和聊天提示符进行组合,从而提高开发效率和代码复用性
- TLS 到 mTLS: 从网络传输安全到零信任架构
youyouiknow
tech-review网络架构java后端面试微服务
我们都知道https用了tls/ssl加密通信,那现在mtls慢慢普及或是场景应用,今天就来讲讲从单向认证到双向认证TLS(单向认证)-客户端验证服务器-类似:你验证银行身份mTLS(双向认证)-客户端和服务器互相验证-类似:银行也要验证你的身份安全模型的演进传统安全模型:-基于边界防护-内网默认信任-外网严格控制零信任模型:-不信任任何请求-始终验证身份-最小权限原则适用场景对比TLS适用:-公
- qt mvc 详解 并举例
爱学习的大牛123
qt开发qt
QtMVC(Model-View-Controller)是一种设计模式,用于将用户界面与底层数据分离开来。在Qt中,这种模式被称为Model/View架构。以下是对QtMVC的详细解释,并附带示例:1.模型(Model):-负责数据的存储和管理-定义数据的结构和操作方法-不依赖于视图或控制器2.视图(View):-负责数据的可视化展示-从模型获取数据并显示-可以有多个视图展示同一个模型的数据3.委
- 大模型:LangChain技术讲解
玉成226
【大模型】langchain
一、什么是LangChain1、介绍LangChain是一个用于开发由大型语言模型提供支持的Python框架。它提供了一系列工具和组件,帮助我们将语言模型集成到自己的应用程序中。有了它之后,我们可以更轻松地实现对话系统、文本生成、文本分类、问答系统等功能。2、LangChain官网文档官网:https://python.langchain.com/docs/introduction/3、LangC
- 深度学习中的通道(Channel)概念详解
小·恐·龙
大模型深度学习人工智能
1.通道的基本概念通道(Channel)是深度学习中的一个重要概念,它在不同场景下有不同的具体含义。理解通道概念对于理解深度学习模型的结构和工作原理至关重要。2.大语言模型中的通道2.1全连接层的通道概念2.1.1基本结构输入:[batch_size,input_features]权重:[input_features,output_features]输出:[batch_size,output_fe
- 计算机组成原理实验指令分析,计算机组成原理实验报告.doc
奶油小馒头
计算机组成原理实验指令分析
文档介绍:评语:课中检查完成的题号及题数:课后完成的题号与题数:成绩:自评成绩:XX实验报告实验名称:CPU与简单模型机设计实验日期:2016.XX.XX班级:1001XXXX学号:2014XXXX:XX同组同学信息班级:1001XXXX学号:2014XXXXX:XXXX一、实验目的:1.掌握一个简单CPU的组成原理。2.在掌握部件单元电路的基础上,进一步将其构造一台基本模型计算机3.为其定义五条
- 软件架构设计与模式之:模块化设计与组件化架构
AI天才研究院
AI大模型企业级应用开发实战架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
软件架构设计与模式之:模块化设计与组件化架构作者:禅与计算机程序设计艺术文章目录软件架构设计与模式之:模块化设计与组件化架构1.背景介绍模块化设计的特点组件化设计的特点2.核心概念与联系定义关系3.核心算法原理和具体操作步骤以及数学模型公式详细讲解模块化设计模式模块化设计模式详解(一)功能分工模式1.功能设计2.职责分工3.功能分工结果(二)数据分工模式1.数据设计2.数据角色分工3.数据主题分工
- 使用Chaindesk与大语言模型集成的实战指南
srudfktuffk
语言模型人工智能自然语言处理python
技术背景介绍在现代AI应用中,快速有效地从大量数据中获取相关信息是至关重要的。Chaindesk是一款开源的文档检索平台,旨在将您的个人数据与大型语言模型(LLM)连接起来,实现高效的信息检索和应用集成。核心原理解析Chaindesk通过创建"数据存储"(datastore)来管理和索引数据,利用检索器(Retriever)进行高效查询。这使得用户能够在私有数据的基础上构建智能应用,而无需担心数据
- CS书籍、代码资源下载网址
sun_kang
CSGuide&&Linkslinuxjavatutorialsdebiandocumentationlinux内核
CS网址收藏啄木鸟Pythonic开源社区:http://www.woodpecker.org.cn/中国IT实验室(游戏开发):http://game.chinaitlab.com/游戏开发资源网:http://www.gameres.com/国内游戏开发论坛:http://bbs.gameres.com/国外的游戏开发站:http://www.gamedev.net/《问道》游戏开发论坛:ht
- kotlin的协程的基础概念
小李飞飞砖
kotlin前端开发语言
Kotlin的协程是一种用于简化异步编程的强大工具。理解协程的基础概念可以帮助开发者有效地利用其能力。以下是Kotlin协程的一些关键基础概念:协程(Coroutines):协程是一种用于处理并发任务的编程模型,它可以在单个线程内执行异步任务。与传统的线程相比,协程更加轻量级,可以高效地执行大量并发任务。挂起函数(SuspendFunctions):使用suspend关键字定义的函数,可以在不阻塞
- 未登录词 Out-of-Vocabulary, OOV
risc123456
nlp
未登录词oov未登录词(Out-of-Vocabulary,OOV)是指在训练数据中没有出现过的词汇,但在测试数据或实际应用中却出现了。未登录词是自然语言处理(NLP)任务中常见的挑战之一,因为它们可能导致模型无法正确处理或理解这些词汇,从而影响模型的性能。以下是一些关于未登录词的详细解释和处理方法:###未登录词的来源1.**罕见词**:在训练数据中出现次数非常少的词,可能在训练过程中被忽略或未
- 探索ChatLiteLLM与Langchain的集成应用
safHTEAHE
langchainpython
在现代AI应用开发中,简化调用多种语言模型的过程显得尤为重要。ChatLiteLLM库应运而生,它为开发者提供了调用如Anthropic、Azure、Huggingface、Replicate等模型的简便方法。这篇文章将带你深入了解如何使用Langchain与LiteLLMI/O库协同工作,实现高效的语言模型交互。1.技术背景介绍随着人工智能技术的飞速发展,多种语言模型应用于不同场景。集成这些模型
- 高效使用Alibaba Cloud PAI EAS进行AI模型推理
sagvWSRJHMNEB
人工智能深度学习神经网络python
技术背景介绍在当今的AI模型开发中,高效的推理服务是将训练好的模型投入实际应用的关键环节。AlibabaCloudPAI平台专为企业级AI开发提供了一整套服务,其中的PAI-EAS(ElasticAlgorithmService)是用于模型推理和部署的高性能服务。它支持多种硬件资源,能够在高吞吐量和低延迟环境下运行复杂模型,并提供灵活的弹性扩展和全面的运维监控系统。核心原理解析PAI-EAS通过结
- Trae:新一代 AI 智能 IDE,颠覆你的开发体验
that's boy
人工智能idechatgptopenaiAI编程AI写作Claude
想体验各种AI模型的强大功能吗?chatTools平台汇集了o1、GPT4o、Claude和Gemini等多种AI选择,无论您有何种AI需求,都能在这里找到合适的解决方案。现在就来chatTools,开启您的AI之旅吧!作为一名开发者,你是否厌倦了繁琐的重复劳动?是否渴望一个能够真正理解你意图的编程助手?如果你的答案是肯定的,那么你一定要了解一下Trae——一款带有AI功能的智能IDE,它将彻底改
- MongoDB详细讲解 + springboot集成
you0719
简单学点java数据库java
MongoDB以JSON为数据模型的文档非关系型数据库垂直扩展在一个机器上进行性能扩展水平扩展多个机器的扩展定位特点定位为应用数据库,存储数据特点:量大/非敏感/一定的查询性能MongoDB的语法是JavaScript语法添加db.集合名.insert(js对象)编辑db.集合名.updateMany({key:value}{$set:{key:value}})删除db.集合名.deleteMan
- face-kkk
山山而川_R
face深度学习
目录一、配置环境1、新建虚拟环境2、配置环境安装包3、下载安装使用环境二、注册新人1、采集照片2、注册新人3、测试视频或摄像头三、配置文件config1、项目配置文件configs/configs.py,用于设置人脸检测模型,特征提取模型二、下面是自己测试用(个人的一个记录,不具备参考意义)MTCNN人脸检测参考项目:GitHub-Sierkinhane/mtcnn-pytorch:Afacede
- FunASR语言识别的环境安装、推理
山山而川_R
FunASRr语言xcode开发语言
目录一、环境配置1、创建虚拟环境2、安装环境及pytorch官网:pytorch下载地址3、安装funasr之前,确保已经安装了下面依赖环境:python代码调用(推荐)4、模型下载5、启动funasr服务二、客户端连接2.1html连接三、推理识别模型1、实时语音识别2、非实时语音识别一、环境配置源码地址:FunASRFunASR/README_zh.mdatmain·alibaba-damo-
- 如何写出优秀的提示词?ChatGPT官方的六种方法
大懒猫软件
chatgpt命令模式promptai
使用ChatGPT时,提示词(Prompt)的质量直接影响到生成结果的好坏。ChatGPT官方文档中提供了六种优化提示词的方法,这些方法能够帮助用户更好地利用ChatGPT,提升其生成内容的准确性和实用性。本文将结合中文习惯和新的示例,对这些方法进行详细解读。第一章:指令要清晰清晰的指令是高效使用ChatGPT的基础。明确表达需求,避免让模型猜测,是获得精准回答的关键。1.1问题里包含更多细节在提
- 在EverlyAI上运行LLM模型——以LLAMA为例
HGWAcsdgvs
llamapython
在EverlyAI上运行LLM模型——以LLAMA为例技术背景介绍EverlyAI是一个强大的云平台,允许你在云中大规模运行机器学习模型。它还提供了对多种大型语言模型(LLM)的API访问。在这篇文章中,我们将展示如何使用EverlyAI的API来调用LLAMA模型。通过这种方式,你可以在云端轻松地运行和测试你的语言模型。核心原理解析LLAMA模型是一个强大的变压器模型,它具有数十亿个参数,能够处
- CSS语言的数据结构
Code侠客行
包罗万象golang开发语言后端
CSS数据结构与实践CSS(层叠样式表)是网页设计中不可或缺的一部分,它不仅负责网页的外观和布局,还影响用户的体验。在现代网页设计中,理清和理解CSS的内部结构和数据组织至关重要。本文将深入探讨CSS的基本概念、常用的样式规则、选择器、盒模型、布局方式及其在实际开发中的应用。一、CSS的基本概念CSS的全称是层叠样式表,它是用来描述如何呈现HTML文档的样式语言。CSS可以控制文档的结构、颜色、字
- 深入剖析 JVM 内存模型
小白的一叶扁舟
面试题jvmjavaspringboot架构
前言:下面分别介绍了新生代和老年代的不同收集器及其相关子类型,并附有示例代码和说明,感兴趣的朋友可以参考一下。简介:在Java虚拟机(JVM)的世界里,内存模型是其核心架构之一,它决定了Java程序如何存储和管理数据,深刻影响着程序的性能和稳定性。了解JVM内存模型,对于优化Java应用、排查内存相关问题至关重要。一、类加载器子系统类加载器子系统在JVM中扮演着数据“搬运工”的角色,负责将字节码文
- 利用E2B环境进行数据分析 - 创建一个简单的OpenAI Agent
srudfktuffk
数据分析数据挖掘python
在AI技术应用中,数据分析是一个关键环节。E2B的云环境为大模型(LLM)的运行提供了一个安全的运行时沙箱,非常适合用来构建代码解释器或进行高级数据分析。在这篇文章中,我们将介绍如何利用E2B的DataAnalysis沙箱,结合OpenAI的API,创建一个简化的自动化数据分析应用。技术背景介绍E2B的DataAnalysis沙箱能够安全地执行代码,是构建自动化数据分析工具的理想选择。该沙箱提供了
- 使用OpenAI Chat模型进行自然语言处理的实战指南
GEAWfaacc
自然语言处理easyui人工智能python
在本文中,我们将详细介绍如何利用OpenAI的Chat模型进行自然语言处理任务。我们将涵盖从API配置到实际应用的一整套流程,并提供可运行的代码示例来帮助大家上手。如果你对AI对话模型的实际应用感兴趣,那么这篇文章将非常适合你。一、技术背景介绍OpenAI的Chat模型是一类专门用于对话任务的预训练语言模型。它们可以处理多种输入类型,支持丰富的功能调用,适用于各种自然语言处理场景。从翻译到对话生成
- 大语言模型原理与工程实践:预训练数据构建
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:预训练数据构建1.背景介绍大语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到情感分析,再到机器翻译,几乎无所不能。这些模型的成功很大程度上依赖于预训练数据的质量和规模。预训练数据的构建不仅影响模型的性能,还决定了模型的泛化能力和应用范围。在本文中
- 大语言模型原理与工程实践:网页数据
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:网页数据1.背景介绍在当今信息爆炸的时代,网页数据成为了大数据的重要来源之一。网页数据不仅包含了丰富的文本信息,还包括了图像、视频、音频等多媒体内容。大语言模型(LargeLanguageModels,LLMs)作为自然语言处理(NLP)领域的前沿技术,能够从海量的网页数据中提取有价值的信息,进行文本生成、情感分析、问答系统等多种任务。大语言模型的成功离不开深度学习技术的
- 大语言模型原理与工程实践:案例介绍
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:案例介绍作者:禅与计算机程序设计艺术近年来,随着深度学习技术的快速发展,大语言模型(LargeLanguageModel,LLM)在自然语言处理领域取得了突破性进展,展现出强大的文本生成、理解和推理能力。从智能对话到机器翻译,从代码生成到诗歌创作,LLM正在深刻地改变着我们与信息交互的方式,并为人工智能应用开拓了更广阔的空间。1.背景介绍1.1大语言模型的兴起大语言模型的
- 机器学习-分类算法评估标准
赛丽曼
机器学习机器学习分类人工智能
一.准确率accuracy将预测结果和测试集的目标值比较,计算预测正确的百分比准确率越高说明模型效果越好fromsklearnimportdatasetsfromsklearn.model_selectionimporttrain_test_splitfromsklearn.neighborsimportKNeighborsClassifier#加载鸢尾花数据X,y=datasets.load_i
- Azure 基础
SmallFatMan
#Azureazuremicrosoft运维linux服务器学习面试
Azure基础一、Azure基础知识简介二、云计算简介?三、责任共担四、你始终负责:五、云服务提供商始终负责:六、云模型1、私有云2、公有云3、混合云4、多云一、Azure基础知识简介MicrosoftAzure是一个云计算平台,提供一系列不断扩展的服务,可帮助你构建解决方案来满足业务目标。Azure服务支持从简单到复杂的一切内容。Azure具有简单的Web服务,用于在云中托管业务。Azure还支
- .net开发面试题
神之王楠
.net面试
一、.NET初级开发包括关于.NET基础知识、C#编程语言、ASP.NETMVC框架等方面的问题。什么是.NET?C#中的委托是什么?请简述private、protected、public、internal修饰符的访问权限。什么是ASP.NETMVC?在ASP.NETMVC中,模型、视图和控制器的作用是什么?什么是视图模型(ViewModel)?简述装箱和拆箱的概念。二、.NET中级开发涉及.NE
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比