目录
一、概述
什么是消息中间件?
二、消息队列的使用场景
为什么使用消息队列?
消息队列有什么优缺点?
三、目前流行的消息队列优缺点对比
四、总结
五、消息中间件的组成
六、消息中间件模式分类
1 点对点
2 发布/订阅
七、消息中间件的优势
八、消息中间件应用场景
九、消息中间件常用协议
十、常见消息中间件MQ介绍
1 RocketMQ
2 RabbitMQ
3 ActiveMQ
4 Redis
5 Kafka
十一、比较
十二、如何保证消息队列的高可用性
十三、如何保证消息消费时的幂等性
十四、分析一下RabbitMQ和Kafka的消息可靠性传输的问题。
(一)RabbitMQ
(二)Kafka
十五、如何保证消息的顺序性
十六、如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时怎么解决?
(一)大量消息在mq里积压了几个小时了还没解决
(二)消息队列过期失效问题
(三) 消息队列满了怎么搞?
转载:
https://blog.csdn.net/java_zyq/article/details/80022391
https://blog.csdn.net/wqc19920906/article/details/82193316
https://blog.csdn.net/qq_36236890/article/details/81174504
消息队列中间件(简称消息中间件)是指利用高效可靠的消息传递机制进行与平台无关的数据交流,并基于数据通信来进行分布式系统的集成。通过提供消息传递和消息排队模型,它可以在分布式环境下提供应用解耦、弹性伸缩、冗余存储、流量削峰、异步通信、数据同步等等功能,其作为分布式系统架构中的一个重要组件,有着举足轻重的地位。个人感觉比价场景应用核心的有三个:解耦、异步、削峰。
其实这个话题也是面试官经常问询的问题,问问你消息队列都有哪些使用场景,然后你项目里具体是什么场景,说说你在这个场景里用消息队列是什么
期望的一个回答是说,你们公司有个什么业务场景,这个业务场景有个什么技术挑战,如果不用MQ可能会很麻烦,但是你现在用了MQ之后带给了你很多的好处
现在你可以下想想你如何回答上述问题,想不起来? 好吧我这里先介绍几个常见使用场景,提醒下。。。
解耦:现场画个图来说明一下,
A系统发送个数据到BCD三个系统,接口调用发送,那如果E系统也要这个数据呢?那如果C系统现在不需要了呢?现在A系统又要发送第二种数据了呢?A系统负责人濒临崩溃中。。。再来点更加崩溃的事儿,A系统要时时刻刻考虑BCDE四个系统如果挂了咋办?我要不要重发?我要不要把消息存起来?头发都白了啊。。。
这是你需要去考虑一下你负责的系统中是否有类似的场景,就是一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用MQ给他异步化解耦,也是可以的,你就需要去考虑在你的项目里(做过微服务项目的同学这里是不是考虑下 消息总线 搭配Rabbitmq 做解耦 用于广播配置文件的更改或者服务间的通讯?),是不是可以运用这个MQ去进行系统的解耦。在简历中体现出来这块东西,用MQ作解耦。
异步:现场画个图来说明一下,
A系统接收一个请求,需要在自己本地写库,还需要在BCD三个系统写库,自己本地写库要3ms,BCD三个系统分别写库要300ms、450ms、200ms。最终请求总延时是3 + 300 + 450 + 200 = 953ms,接近1s,用户感觉搞个什么东西,慢死了慢死了。
更改为 异步后当消息发送到消息队列 自行让对应系统进行消费即可 所以给用户的体验为20 + 5 = 25ms ,快 好快!
削峰:每天0点到11点,A系统风平浪静,每秒并发请求数量就100个。结果每次一到11点~1点,每秒并发请求数量突然会暴增到1万条。但是系统最大的处理能力就只能是每秒钟处理1000个请求啊。。。尴尬了,系统会死。。。
优点:特殊场景解耦、异步、削峰
缺点:
系统可用性降低:系统引入的外部依赖越多,越容易挂掉,本来你就是A系统调用BCD三个系统的接口就好了,人ABCD四个系统好好的,没啥问题,你偏加个MQ进来,万一MQ挂了咋整?MQ挂了,整套系统崩溃了,你不就完了么。
系统复杂性提高:硬生生加个MQ进来,你怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?头大头大,问题一大堆,痛苦不已
一致性问题:A系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是BCD三个系统那里,BD两个系统写库成功了,结果C系统写库失败了,咋整?你这数据就不一致了。
所以消息队列实际是一种非常复杂的架构,你引入它有很多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉,最好之后,你会发现,妈呀,系统复杂度提升了一个数量级,也许是复杂了10倍。但是关键时刻,用,还是得用的。。。
kafka、activemq、rabbitmq、rocketmq都有什么优点和缺点啊?
常见的MQ其实就这几种,别的还有很多其他MQ,但是比较冷门的,那么就别多说了
作为一个码农,你起码得知道各种mq的优点和缺点吧,咱们来画个表格看看
功能支持:除了 Kafka,其他三个功能都较为完备。 Kafka 功能较为简单,主要支持简单的MQ功能,在大数据领域 的实时计算以及日志采集被大规模使用,是事实上的标准
消息丢失:ActiveMQ 和 RabbitMQ 丢失的可能性非常低, RocketMQ 和 Kafka 理论上不会丢失。
特性 |
ActiveMQ |
RabbitMQ |
RocketMQ
|
Kafka |
---|---|---|---|---|
单机吞吐量 | 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 | 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 | 10万级,RocketMQ也是可以支撑高吞吐的一种MQ | 10万级别,这是kafka最大的优点,就是吞吐量高。
一般配合大数据类的系统来进行实时数据计算、日志采集等场景 |
topic数量对吞吐量的影响 | topic可以达到几百,几千个的级别,吞吐量会有较小幅度的下降
这是RocketMQ的一大优势,在同等机器下,可以支撑大量的topic |
topic从几十个到几百个的时候,吞吐量会大幅度下降
所以在同等机器下,kafka尽量保证topic数量不要过多。如果要支撑大规模topic,需要增加更多的机器资源 |
||
时效性 | ms级 | 微秒级,这是rabbitmq的一大特点,延迟是最低的 |
ms级 |
延迟在ms级以内 |
可用性 | 高,基于主从架构实现高可用性 | 高,基于主从架构实现高可用性 | 非常高,分布式架构 | 非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用 |
消息可靠性 | 有较低的概率丢失数据 | 基于erlang开发,所以并发能力很强,性能极其好,延时很低 |
MQ功能较为完善,还是分布式的,扩展性好 |
功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用,是事实上的标准 |
功能支持 | MQ领域的功能极其完备 |
基于erlang开发,所以并发能力很强,性能极其好,延时很低 |
MQ功能较为完善,还是分布式的,扩展性好 |
功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用,是事实上的标准 |
优劣势总结 | 非常成熟,功能强大,在业内大量的公司以及项目中都有应用
偶尔会有较低概率丢失消息
而且现在社区以及国内应用都越来越少,官方社区现在对ActiveMQ 5.x维护越来越少,几个月才发布一个版本
而且确实主要是基于解耦和异步来用的,较少在大规模吞吐的场景中使用 |
erlang语言开发,性能极其好,延时很低;
吞吐量到万级,MQ功能比较完备
而且开源提供的管理界面非常棒,用起来很好用
社区相对比较活跃,几乎每个月都发布几个版本分
在国内一些互联网公司近几年用rabbitmq也比较多一些
但是问题也是显而易见的,RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重。
而且erlang开发,国内有几个公司有实力做erlang源码级别的研究和定制?如果说你没这个实力的话,确实偶尔会有一些问题,你很难去看懂源码,你公司对这个东西的掌控很弱,基本职能依赖于开源社区的快速维护和修复bug。
而且rabbitmq集群动态扩展会很麻烦,不过这个我觉得还好。其实主要是erlang语言本身带来的问题。很难读源码,很难定制和掌控。 |
接口简单易用,而且毕竟在阿里大规模应用过,有阿里品牌保障
日处理消息上百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是ok的,还可以支撑大规模的topic数量,支持复杂MQ业务场景
而且一个很大的优势在于,阿里出品都是java系的,我们可以自己阅读源码,定制自己公司的MQ,可以掌控
社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准JMS规范走的有些系统要迁移需要修改大量代码
还有就是阿里出台的技术,你得做好这个技术万一被抛弃,社区黄掉的风险,那如果你们公司有技术实力我觉得用RocketMQ挺好的 |
kafka的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展
同时kafka最好是支撑较少的topic数量即可,保证其超高吞吐量
而且kafka唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略
这个特性天然适合大数据实时计算以及日志收集 |
一般的业务系统要引入MQ,最早大家都用ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧,我个人不推荐用这个了;
后来大家开始用RabbitMQ,但是确实erlang语言阻止了大量的java工程师去深入研究和掌控他,对公司而言,几乎处于不可控的状态,但是确实人是开源的,比较稳定的支持,活跃度也高;
不过现在确实越来越多的公司,会去用RocketMQ,确实很不错,但是我提醒一下自己想好社区万一突然黄掉的风险,对自己公司技术实力有绝对自信的,我推荐用RocketMQ,否则回去老老实实用RabbitMQ吧,人是活跃开源社区,绝对不会黄
所以中小型公司,技术实力较为一般,技术挑战不是特别高,用RabbitMQ是不错的选择(我们项目也正在使用这个^_^);大型公司,基础架构研发实力较强,用RocketMQ是很好的选择
如果是大数据领域的实时计算、日志采集等场景,用Kafka是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范
1 Broker
消息服务器,作为server提供消息核心服务
2 Producer
消息生产者,业务的发起方,负责生产消息传输给broker,
3 Consumer
消息消费者,业务的处理方,负责从broker获取消息并进行业务逻辑处理
4 Topic
主题,发布订阅模式下的消息统一汇集地,不同生产者向topic发送消息,由MQ服务器分发到不同的订阅者,实现消息的 广播
5 Queue
队列,PTP模式下,特定生产者向特定queue发送消息,消费者订阅特定的queue完成指定消息的接收
6 Message
消息体,根据不同通信协议定义的固定格式进行编码的数据包,来封装业务数据,实现消息的传输
PTP点对点:使用queue作为通信载体
说明:
消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息。
消息被消费以后,queue中不再存储,所以消息消费者不可能消费到已经被消费的消息。 Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
Pub/Sub发布订阅(广播):使用topic作为通信载体
说明:
消息生产者(发布)将消息发布到topic中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到topic的消息会被所有订阅者消费。
queue实现了负载均衡,将producer生产的消息发送到消息队列中,由多个消费者消费。但一个消息只能被一个消费者接受,当没有消费者可用时,这个消息会被保存直到有一个可用的消费者。
topic实现了发布和订阅,当你发布一个消息,所有订阅这个topic的服务都能得到这个消息,所以从1到N个订阅者都能得到一个消息的拷贝。
1 系统解耦
交互系统之间没有直接的调用关系,只是通过消息传输,故系统侵入性不强,耦合度低。
2 提高系统响应时间
例如原来的一套逻辑,完成支付可能涉及先修改订单状态、计算会员积分、通知物流配送几个逻辑才能完成;通过MQ架构设计,就可将紧急重要(需要立刻响应)的业务放到该调用方法中,响应要求不高的使用消息队列,放到MQ队列中,供消费者处理。
3 为大数据处理架构提供服务
通过消息作为整合,大数据的背景下,消息队列还与实时处理架构整合,为数据处理提供性能支持。
4 Java消息服务——JMS
Java消息服务(Java Message Service,JMS)应用程序接口是一个Java平台中关于面向消息中间件(MOM)的API,用于在两个应用程序之间,或分布式系统中发送消息,进行异步通信。
JMS中的P2P和Pub/Sub消息模式:点对点(point to point, queue)与发布订阅(publish/subscribe,topic)最初是由JMS定义的。这两种模式主要区别或解决的问题就是发送到队列的消息能否重复消费(多订阅)。
1 异步通信
有些业务不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
2 解耦
降低工程间的强依赖程度,针对异构系统进行适配。在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。通过消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口,当应用发生变化时,可以独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
3 冗余
有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的”插入-获取-删除”范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。
4 扩展性
因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。便于分布式扩容。
5 过载保护
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量无法提取预知;如果以为了能处理这类瞬间峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
6 可恢复性
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
7 顺序保证
在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。
8 缓冲
在任何重要的系统中,都会有需要不同的处理时间的元素。消息队列通过一个缓冲层来帮助任务最高效率的执行,该缓冲有助于控制和优化数据流经过系统的速度。以调节系统响应时间。
9 数据流处理
分布式系统产生的海量数据流,如:业务日志、监控数据、用户行为等,针对这些数据流进行实时或批量采集汇总,然后进行大数据分析是当前互联网的必备技术,通过消息队列完成此类数据收集是最好的选择。
1 AMQP协议
AMQP即Advanced Message Queuing Protocol,一个提供统一消息服务的应用层标准高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件不同产品,不同开发语言等条件的限制。
优点:可靠、通用
2 MQTT协议
MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分。该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器(比如通过Twitter让房屋联网)的通信协议。
优点:格式简洁、占用带宽小、移动端通信、PUSH、嵌入式系统
3 STOMP协议
STOMP(Streaming Text Orientated Message Protocol)是流文本定向消息协议,是一种为MOM(Message Oriented Middleware,面向消息的中间件)设计的简单文本协议。STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理(Broker)进行交互。
优点:命令模式(非topic\queue模式)
4 XMPP协议
XMPP(可扩展消息处理现场协议,Extensible Messaging and Presence Protocol)是基于可扩展标记语言(XML)的协议,多用于即时消息(IM)以及在线现场探测。适用于服务器之间的准即时操作。核心是基于XML流传输,这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息,即使其操作系统和浏览器不同。
优点:通用公开、兼容性强、可扩展、安全性高,但XML编码格式占用带宽大
5 其他基于TCP/IP自定义的协议
有些特殊框架(如:redis、kafka、zeroMq等)根据自身需要未严格遵循MQ规范,而是基于TCP\IP自行封装了一套协议,通过网络socket接口进行传输,实现了MQ的功能。
阿里系下开源的一款分布式、队列模型的消息中间件,原名Metaq,3.0版本名称改为RocketMQ,是阿里参照kafka设计思想使用java实现的一套mq。同时将阿里系内部多款mq产品(Notify、metaq)进行整合,只维护核心功能,去除了所有其他运行时依赖,保证核心功能最简化,在此基础上配合阿里上述其他开源产品实现不同场景下mq的架构,目前主要多用于订单交易系统。
具有以下特点:
官方提供了一些不同于kafka的对比差异:
https://rocketmq.apache.org/docs/motivation/
https://www.elastic.co/guide/cn/elasticsearch/guide/current/index.html
使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP,STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。同时实现了Broker架构,核心思想是生产者不会将消息直接发送给队列,消息在发送给客户端时先在中心队列排队。对路由(Routing),负载均衡(Load balance)、数据持久化都有很好的支持。多用于进行企业级的ESB整合。
Apache下的一个子项目。使用Java完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,少量代码就可以高效地实现高级应用场景。可插拔的传输协议支持,比如:in-VM, TCP, SSL, NIO, UDP, multicast, JGroups and JXTA transports。RabbitMQ、ZeroMQ、ActiveMQ均支持常用的多种语言客户端 C++、Java、.Net,、Python、 Php、 Ruby等。
使用C语言开发的一个Key-Value的NoSQL数据库,开发维护很活跃,虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。
http://kafka.apachecn.org/intro.html
Apache下的一个子项目,使用scala实现的一个高性能分布式Publish/Subscribe消息队列系统,具有以下特性:
6 ZeroMQ
号称最快的消息队列系统,专门为高吞吐量/低延迟的场景开发,在金融界的应用中经常使用,偏重于实时数据通信场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,开发成本高。因此ZeroMQ具有一个独特的非中间件的模式,更像一个socket library,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序本身就是使用ZeroMQ API完成逻辑服务的角色。但是ZeroMQ仅提供非持久性的队列,如果down机,数据将会丢失。如:Twitter的Storm中使用ZeroMQ作为数据流的传输。
ZeroMQ套接字是与传输层无关的:ZeroMQ套接字对所有传输层协议定义了统一的API接口。默认支持 进程内(inproc) ,进程间(IPC) ,多播,TCP协议,在不同的协议之间切换只要简单的改变连接字符串的前缀。可以在任何时候以最小的代价从进程间的本地通信切换到分布式下的TCP通信。ZeroMQ在背后处理连接建立,断开和重连逻辑。
特性:
综合选择RabbitMq
由于笔者只使用和实践过RabbitMQ和Kafka,RocketMQ和ActiveMQ了解的不深,所以分析一下RabbitMQ和Kafka的高可用。
(一)RabbitMQ
RabbitMQ有三种模式:单机模式,普通集群模式,镜像集群模式
(1)单机模式
单机模式平常使用在开发或者本地测试场景,一般就是测试是不是能够正确的处理消息,生产上基本没人去用单机模式,风险很大。
(2)普通集群模式
普通集群模式就是启动多个RabbitMQ实例。在你创建的queue,只会放在一个rabbtimq实例上,但是每个实例都同步queue的元数据。在消费的时候完了,上如果连接到了另外一个实例,那么那个实例会从queue所在实例上拉取数据过来。
这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个queue所在实例消费数据,前者有数据拉取的开销,后者导致单实例性能瓶颈。
而且如果那个放queue的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你开启了消息持久化,让RabbitMQ落地存储消息的话,消息不一定会丢,得等这个实例恢复了,然后才可以继续从这个queue拉取数据。
这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个queue的读写操作。
(3)镜像集群模式
镜像集群模式是所谓的RabbitMQ的高可用模式,跟普通集群模式不一样的是,你创建的queue,无论元数据还是queue里的消息都会存在于多个实例上,然后每次你写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。
优点在于你任何一个实例宕机了,没事儿,别的实例都可以用。缺点在于性能开销太大和扩展性很低,同步所有实例,这会导致网络带宽和压力很重,而且扩展性很低,每增加一个实例都会去包含已有的queue的所有数据,并没有办法线性扩展queue。
开启镜像集群模式可以去RabbitMQ的管理控制台去增加一个策略,指定要求数据同步到所有节点的,也可以要求就同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
(二)Kafka
Kafka天生就是一个分布式的消息队列,它可以由多个broker组成,每个broker是一个节点;你创建一个topic,这个topic可以划分为多个partition,每个partition可以存在于不同的broker上,每个partition就放一部分数据。
kafka 0.8以前,是没有HA机制的,就是任何一个broker宕机了,那个broker上的partition就废了,没法写也没法读,没有什么高可用性可言。
kafka 0.8以后,提供了HA机制,就是replica副本机制。kafka会均匀的将一个partition的所有replica分布在不同的机器上,来提高容错性。每个partition的数据都会同步到吉他机器上,形成自己的多个replica副本。然后所有replica会选举一个leader出来,那么生产和消费都去leader,其他replica就是follower,leader会同步数据给follower。当leader挂了会自动去找replica,然后会再选举一个leader出来,这样就具有高可用性了。
写数据的时候,生产者就写leader,然后leader将数据落地写本地磁盘,接着其他follower自己主动从leader来pull数据。一旦所有follower同步好数据了,就会发送ack给leader,leader收到所有follower的ack之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为)
消费的时候,只会从leader去读,但是只有一个消息已经被所有follower都同步成功返回ack的时候,这个消息才会被消费者读到。
其实消息重复消费的主要原因在于回馈机制(RabbitMQ是ack,Kafka是offset),在某些场景中我们采用的回馈机制不同,原因也不同,例如消费者消费完消息后回复ack, 但是刚消费完还没来得及提交系统就重启了,这时候上来就pull消息的时候由于没有提交ack或者offset,消费的还是上条消息。
那么如何怎么来保证消息消费的幂等性呢?实际上我们只要保证多条相同的数据过来的时候只处理一条或者说多条处理和处理一条造成的结果相同即可,但是具体怎么做要根据业务需求来定,例如入库消息,先查一下消息是否已经入库啊或者说搞个唯一约束啊什么的,还有一些是天生保证幂等性就根本不用去管,例如redis就是天然幂等性。
还有一个问题,消费者消费消息的时候在某些场景下要放过消费不了的消息,遇到消费不了的消息通过日志记录一下或者搞个什么措施以后再来处理,但是一定要放过消息,因为在某些场景下例如spring-rabbitmq的默认回馈策略是出现异常就没有提交ack,导致了一直在重发那条消费异常的消息,而且一直还消费不了,这就尴尬了,后果你会懂的。
六、如何保证消息的可靠性传输?
(1)生产者弄丢了数据
生产者将数据发送到RabbitMQ的时候,可能数据就在半路给搞丢了,因为网络啥的问题,都有可能。此时可以选择用RabbitMQ提供的事务功能,就是生产者发送数据之前开启RabbitMQ事务(channel.txSelect),然后发送消息,如果消息没有成功被RabbitMQ接收到,那么生产者会收到异常报错,此时就可以回滚事务(channel.txRollback),然后重试发送消息;如果收到了消息,那么可以提交事务(channel.txCommit)。但是问题是,RabbitMQ事务机制一搞,基本上吞吐量会下来,因为太耗性能。
所以一般来说,如果你要确保说写RabbitMQ的消息别丢,可以开启confirm模式,在生产者那里设置开启confirm模式之后,你每次写的消息都会分配一个唯一的id,然后如果写入了RabbitMQ中,RabbitMQ会给你回传一个ack消息,告诉你说这个消息ok了。如果RabbitMQ没能处理这个消息,会回调你一个nack接口,告诉你这个消息接收失败,你可以重试。而且你可以结合这个机制自己在内存里维护每个消息id的状态,如果超过一定时间还没接收到这个消息的回调,那么你可以重发。
事务机制和cnofirm机制最大的不同在于,事务机制是同步的,你提交一个事务之后会阻塞在那儿,但是confirm机制是异步的,你发送个消息之后就可以发送下一个消息,然后那个消息RabbitMQ接收了之后会异步回调你一个接口通知你这个消息接收到了。
所以一般在生产者这块避免数据丢失,都是用confirm机制的。
(2)RabbitMQ弄丢了数据
就是RabbitMQ自己弄丢了数据,这个你必须开启RabbitMQ的持久化,就是消息写入之后会持久化到磁盘,哪怕是RabbitMQ自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。除非极其罕见的是,RabbitMQ还没持久化,自己就挂了,可能导致少量数据会丢失的,但是这个概率较小。
设置持久化有两个步骤,第一个是创建queue的时候将其设置为持久化的,这样就可以保证RabbitMQ持久化queue的元数据,但是不会持久化queue里的数据;第二个是发送消息的时候将消息的deliveryMode设置为2,就是将消息设置为持久化的,此时RabbitMQ就会将消息持久化到磁盘上去。必须要同时设置这两个持久化才行,RabbitMQ哪怕是挂了,再次重启,也会从磁盘上重启恢复queue,恢复这个queue里的数据。
而且持久化可以跟生产者那边的confirm机制配合起来,只有消息被持久化到磁盘之后,才会通知生产者ack了,所以哪怕是在持久化到磁盘之前,RabbitMQ挂了,数据丢了,生产者收不到ack,你也是可以自己重发的。
哪怕是你给RabbitMQ开启了持久化机制,也有一种可能,就是这个消息写到了RabbitMQ中,但是还没来得及持久化到磁盘上,结果不巧,此时RabbitMQ挂了,就会导致内存里的一点点数据会丢失。
(3)消费端弄丢了数据
RabbitMQ如果丢失了数据,主要是因为你消费的时候,刚消费到,还没处理,结果进程挂了,比如重启了,那么就尴尬了,RabbitMQ认为你都消费了,这数据就丢了。
这个时候得用RabbitMQ提供的ack机制,简单来说,就是你关闭RabbitMQ自动ack,可以通过一个api来调用就行,然后每次你自己代码里确保处理完的时候,再程序里ack一把。这样的话,如果你还没处理完,不就没有ack?那RabbitMQ就认为你还没处理完,这个时候RabbitMQ会把这个消费分配给别的consumer去处理,消息是不会丢的。
(1)消费端弄丢了数据
唯一可能导致消费者弄丢数据的情况,就是说,你那个消费到了这个消息,然后消费者那边自动提交了offset,让kafka以为你已经消费好了这个消息,其实你刚准备处理这个消息,你还没处理,你自己就挂了,此时这条消息就丢咯。
大家都知道kafka会自动提交offset,那么只要关闭自动提交offset,在处理完之后自己手动提交offset,就可以保证数据不会丢。但是此时确实还是会重复消费,比如你刚处理完,还没提交offset,结果自己挂了,此时肯定会重复消费一次,自己保证幂等性就好了。
生产环境碰到的一个问题,就是说我们的kafka消费者消费到了数据之后是写到一个内存的queue里先缓冲一下,结果有的时候,你刚把消息写入内存queue,然后消费者会自动提交offset。
然后此时我们重启了系统,就会导致内存queue里还没来得及处理的数据就丢失了
(2)kafka弄丢了数据
这块比较常见的一个场景,就是kafka某个broker宕机,然后重新选举partiton的leader时。大家想想,要是此时其他的follower刚好还有些数据没有同步,结果此时leader挂了,然后选举某个follower成leader之后,他不就少了一些数据?这就丢了一些数据啊。
生产环境也遇到过,我们也是,之前kafka的leader机器宕机了,将follower切换为leader之后,就会发现说这个数据就丢了。
所以此时一般是要求起码设置如下4个参数:
给这个topic设置replication.factor参数:这个值必须大于1,要求每个partition必须有至少2个副本。
在kafka服务端设置min.insync.replicas参数:这个值必须大于1,这个是要求一个leader至少感知到有至少一个follower还跟自己保持联系,没掉队,这样才能确保leader挂了还有一个follower吧。
在producer端设置acks=all:这个是要求每条数据,必须是写入所有replica之后,才能认为是写成功了。
在producer端设置retries=MAX(很大很大很大的一个值,无限次重试的意思):这个是要求一旦写入失败,就无限重试,卡在这里了。
(3)生产者会不会弄丢数据
如果按照上述的思路设置了ack=all,一定不会丢,要求是,你的leader接收到消息,所有的follower都同步到了消息之后,才认为本次写成功了。如果没满足这个条件,生产者会自动不断的重试,重试无限次。
因为在某些情况下我们扔进MQ中的消息是要严格保证顺序的,尤其涉及到订单什么的业务需求,消费的时候也是要严格保证顺序,不然会出大问题的。
先看看顺序会错乱的俩场景
rabbitmq:一个queue,多个consumer,这不明显乱了
kafka:一个topic,一个partition,一个consumer,内部多线程,这不也明显乱了
如何来保证消息的顺序性呢?
rabbitmq:拆分多个queue,每个queue一个consumer,就是多一些queue而已,确实是麻烦点;或者就一个queue但是对应一个consumer,然后这个consumer内部用内存队列做排队,然后分发给底层不同的worker来处理。
kafka:一个topic,一个partition,一个consumer,内部单线程消费,写N个内存queue,然后N个线程分别消费一个内存queue即可。
几千万条数据在MQ里积压了七八个小时,从下午4点多,积压到了晚上很晚,10点多,11点多
这个是我们真实遇到过的一个场景,确实是线上故障了,这个时候要不然就是修复consumer的问题,让他恢复消费速度,然后傻傻的等待几个小时消费完毕。这个肯定不能在面试的时候说吧。
一个消费者一秒是1000条,一秒3个消费者是3000条,一分钟是18万条,1000多万条,所以如果你积压了几百万到上千万的数据,即使消费者恢复了,也需要大概1小时的时间才能恢复过来。
一般这个时候,只能操作临时紧急扩容了,具体操作步骤和思路如下:
先修复consumer的问题,确保其恢复消费速度,然后将现有cnosumer都停掉。
新建一个topic,partition是原来的10倍,临时建立好原先10倍或者20倍的queue数量。
然后写一个临时的分发数据的consumer程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的10倍数量的queue。
接着临时征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的数据。
这种做法相当于是临时将queue资源和consumer资源扩大10倍,以正常的10倍速度来消费数据。
等快速消费完积压数据之后,得恢复原先部署架构,重新用原先的consumer机器来消费消息。
假设你用的是rabbitmq,rabbitmq是可以设置过期时间的,就是TTL,如果消息在queue中积压超过一定的时间就会被rabbitmq给清理掉,这个数据就没了。那这就是第二个坑了。这就不是说数据会大量积压在mq里,而是大量的数据会直接搞丢。
这个情况下,就不是说要增加consumer消费积压的消息,因为实际上没啥积压,而是丢了大量的消息。我们可以采取一个方案,就是批量重导,这个我们之前线上也有类似的场景干过。就是大量积压的时候,我们当时就直接丢弃数据了,然后等过了高峰期以后,比如大家一起喝咖啡熬夜到晚上12点以后,用户都睡觉了。
这个时候我们就开始写程序,将丢失的那批数据,写个临时程序,一点一点的查出来,然后重新灌入mq里面去,把白天丢的数据给他补回来。也只能是这样了。
假设1万个订单积压在mq里面,没有处理,其中1000个订单都丢了,你只能手动写程序把那1000个订单给查出来,手动发到mq里去再补一次。
如果走的方式是消息积压在mq里,那么如果你很长时间都没处理掉,此时导致mq都快写满了,咋办?这个还有别的办法吗?没有,谁让你第一个方案执行的太慢了,你临时写程序,接入数据来消费,消费一个丢弃一个,都不要了,快速消费掉所有的消息。