- yolo位姿估计实验
jarreyer
YOLO
目录介绍实验过程2.1数据集下载2.2模型和数据配置文件修改2.3模型训练参考链接1.介绍1.1简介YOLOv8-Pose是基于YOLOv4算法的姿势估计模型,旨在实现实时高效的人体姿势估计。姿势估计在计算机视觉领域具有重要意义,可广泛应用于视频监控、运动分析、健康管理等领域。1.2背景传统的姿势估计方法常需复杂网络架构和大量计算资源,导致实时性不佳。YOLOv8-Pose通过对YOLOv4算法进
- 利用 AI 技术监控测试环境运行状态全解析
北陌宝宝
行业研究发展人工智能
在当今数字化时代,测试环境的稳定运行对于软件开发和业务流程的顺畅推进至关重要。传统的监控方式在面对复杂多变的系统时,往往显得力不从心,而AI技术的崛起为测试环境监控带来了新的曙光。作为一名在技术领域摸爬滚打的CSDN博主,今天就来和大家深入探讨一下如何利用AI技术监控测试环境的运行状态。AI在测试环境监控中的应用场景资源监控测试环境中的CPU、内存、存储和网络等硬件资源,就如同人体的各个器官,任何
- 基于Spring+SpringMVC+hibernate实现的体检中心管理系统
huaying0
java毕设资料java基础redisjava大数据人工智能数据库linux
源码及论文下载:http://www.byamd.xyz/tag/java/摘要随着人们生活水平的不断提高,人们的保健意识随之增强,体检已普遍成为人们保健的重要部分。特殊职业的体检、各种职业病的体检、单位职工的群体体检及个人体检使得医院体检人数急剧增加。然而传统的体检工作效率远远不能满足当下剧增的体检业务。所以,医院急需满足健康体检需要的信息管理系统来提高体检工作效率。本系统包括体检项目管理、预约
- 基于STM32的智能健康监测手环系统
STM32发烧友
stm32嵌入式硬件单片机
1.引言传统健康监测设备存在功能单一、数据孤立等问题,难以满足现代健康管理的个性化需求。本文设计了一款基于STM32的智能健康监测手环系统,通过多生理参数采集、AI健康评估与云端协同技术,实现人体健康状态的实时监测与预警,推动主动健康管理模式的普及。2.系统设计2.1硬件设计主控芯片:STM32L476RG,超低功耗设计(7天)无线充电(Qi标准,2小时充满)2.2软件架构生理信号处理:小波变换消
- (未完)BCNet: Learning Body and Cloth Shape from A Single Image
tianyunlinger
笔记人工智能
BCNet:LearningBodyandClothShapefromASingleImage摘要本文提出了一种从单张近正面视角RGB图像自动重建服装和人体形状的方法。为此,我们提出了基于SMPL(SkinnedMulti-PersonLinearModel,多人线性蒙皮模型)的分层服装表示方法,并创新性地使服装的蒙皮权重与人体网格独立,显著提高了服装模型的表现能力。与现有方法相比,我们的方法支持
- 【物联网项目】基于ESP8266设计的家庭灯光与火情智能监测系统(完整工程资料源码等)
阿齐Archie
单片机项目合集单片机嵌入式硬件stm32毕业设计毕设物联网
基于ESP8266设计的家庭灯光与火情智能监测系统效果:摘要:该系统是在家庭灯光与火情智能监测系统的基础上,进行智能化控制监测的设计与开发。系统是以单片机ESP8266WIFI开发板为主控核心,实现对各个主要功能模块的控制。主要模块如HC-SR501人体红外传感器模块、光敏电阻传感器模块、火焰传感器模块、LD3320语音识别模块、DHT11温湿度传感器模块等。使用Arduino开发软件进行烧录程序
- CPD(Coherent Point Drift)非刚性点云配准算法
点云SLAM
点云数据处理技术算法概率论机器学习非刚性配准CPD配准算法EM算法非刚性拼接
CPD(CoherentPointDrift)非刚性点云配准算法详解一、算法概述CPD(CoherentPointDrift)是一种基于概率模型的非刚性点云配准方法,由AndriyMyronenko等人在2009年提出。它通过将点云配准问题转化为概率密度估计问题,结合高斯混合模型(GMM)与正则化形变场,能够有效处理复杂形变(如人体运动、器官形变)的点云对齐任务。核心特点:非刚性对齐:支持大范围、
- 动态视觉SLAM的亿点点思考(含20项最新开源代码链接)[上篇]
3D视觉工坊
3D视觉从入门到精通人工智能
作者:泡椒味的口香糖|来源:3D视觉工坊添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。0.笔者个人体会动态环境下的视觉SLAM一直都是研究的重点和难点,但最近动态SLAM的paper越来越少,感觉主要原因是动态SLAM的框架已经固化,很难做出大的创新。现有的模板基本就是使用目标检测或者语义分割网络剔除动态特征点,然后用几何一致性做进一步的验证。笔者最近也在思考突破口,
- 论文解读(全头皮重建方向):3DCMM
FLOWVERSE
3d3D人头补全
从面部到完整头部:3DCMM的技术原理解析引言在计算机图形学和人体工学领域,3D头部模型的需求日益增加。无论是虚拟化身的创建还是头盔的个性化设计,仅有面部模型往往不足以满足要求,完整的头部几何(包括头皮)才是关键。传统的3D可变形模型(3DMM)多集中于面部重建,头皮区域因数据稀缺和技术限制常被忽略。2022年发表于VRCAI’22的论文《3DCMM:3DComprehensiveMorphabl
- 使用 Python 和 OpenCV 检测人体皮肤颜色变化计算心率
爱搬砖的程序猿.
pythonopencv开发语言
一、引言心率是反映人体健康状况的重要生理指标之一。传统的心率检测方法通常需要使用专业的医疗设备,如心电图仪、心率带等。而随着计算机视觉技术的发展,我们可以利用摄像头捕捉人体皮肤的颜色变化,通过分析这些变化来计算心率。本文将介绍如何使用Python和OpenCV实现这一功能。二、原理概述当心脏跳动时,血液会在血管中流动,导致皮肤表面的颜色发生微小的变化。这种颜色变化主要体现在皮肤的红色通道上。我们可
- PFAS(全氟烷基和多氟烷基物质)测试多少项目?费用是多少。
nx13144450251
模块测试安全数据库功能测试大数据
我们需要了解PFAS是什么。PFAS是全称为全氟和多氟烷基物质,是一类具有独特化学结构的化学物质,具有防水、防油、防污等特性,因此在纺织品、包装材料等领域被广泛使用。然而,长期接触PFAS会对人体健康和环境造成潜在危害,因此对含有PFAS的面料进行测试就显得尤为重要。让我们来了解一下PFAS面料测试的流程。首先是样品的准备。样品可以是纺织品、皮革、包装材料等,需要根据测试标准进行取样。其次是提取和
- 【Unity粒子特效分享-卡通漫画-烟花特效】
井队Tell
#粒子特效篇unity游戏引擎
卡通漫画-烟花特效前言回顾效果图前言回顾可以点击传送门预览。传送门:【Unity粒子特效分享-宇宙星系】.传送门:【Unity粒子特效分享-魔法粒子特效超炫大招】.传送门:【Unity粒子特效分享-刀光特效】.传送门:【Unity粒子特效分享-技能特效】.传送门:【Unity粒子特效分享-科幻魔法光圈脉冲特效】.传送门:【Unity粒子特效分享-血迹飞溅特效】.传送门:【Unity粒子特效分享-高
- 在瑞芯微RK3588平台上使用RKNN部署YOLOv8Pose模型的C++实战指南
机 _ 长
YOLO系列模型有效涨点改进深度学习落地实战YOLOc++开发语言
在人工智能和计算机视觉领域,人体姿态估计是一项极具挑战性的任务,它对于理解人类行为、增强人机交互等方面具有重要意义。YOLOv8Pose作为YOLO系列中的新成员,以其高效和准确性在人体姿态估计任务中脱颖而出。本文将详细介绍如何在瑞芯微RK3588平台上,使用RKNN(RockchipNeuralNetworkToolkit)框架部署YOLOv8Pose模型,并进行C++代码的编译和运行。注本文全
- YOLOv8 Pose使用RKNN进行推理
い不靠譜︶朱Sir
实用项目部署YOLO人工智能pythonlinuxpip
关注微信公众号:朱sir的小站,发送202411081即可免费获取源代码下载链接一、简单介绍YOLOv8-Pose是一种基于YOLOv8架构的姿态估计模型,能够识别图像中的关键点位置,这些关键点通常表示人体的关节、特征点或其他显著位置。该模型在COCO关键点数据集上训练,适合多种姿势估计任务。二、ONNX推理1.首先需要先将Pytorch模型转换为Onnx模型,下载pt模型这里给出官方的权重下载地
- CVPR2023 Highlight | ECON:最新单图穿衣人三维重建SOTA算法
3D视觉工坊
3D视觉从入门到精通算法SLAM自动驾驶3D视觉
作者:宁了个宁|来源:计算机视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf。添加微信:dddvisiona,备注:三维重建,拉你入群。文末附行业细分群。图1所示。从彩色图像进行人体数字化。ECON结合了自由形式隐式表示的最佳方面,以及明确的拟人化正则化,以推断高保真度的3D人类,即使是宽松的衣服或具有挑战性的姿势。0.笔者个人体会这篇文章讨论了单图像的穿着人类重建问题。隐式方
- 基于单片机的智能家居电控系统(源码+万字报告+实物)
炳烛之明科技
单片机智能家居嵌入式硬件
目录摘要IAbstractII第一章绪论11.1设计背景11.2国内外研究现状11.3设计的主要内容2第二章设计方案32.1设计思路32.2模块的选择42.2.1单片机模块的选择42.2.2声音传感器的选择42.2.3人体传感器介绍52.2.4OLED液晶介绍52.2.5一氧化碳采集检测模块62.2.6独立按键式模块62.2.7数模转换器62.2.8指纹识别模块72.2.9WiFi模块72.3系统
- 【Unity粒子特效分享-卡通特效2】
井队Tell
#粒子特效篇unity游戏引擎
卡通特效2前言回顾效果图前言回顾可以点击传送门预览。传送门:【Unity粒子特效分享-宇宙星系】.传送门:【Unity粒子特效分享-魔法粒子特效超炫大招】.传送门:【Unity粒子特效分享-刀光特效】.传送门:【Unity粒子特效分享-技能特效】.传送门:【Unity粒子特效分享-科幻魔法光圈脉冲特效】.传送门:【Unity粒子特效分享-血迹飞溅特效】.传送门:【Unity粒子特效分享-高级炫丽粒
- 《Python制作动态爱心粒子特效》
后端工匠之道
Python爱心代码pythonpygame开发语言python表白初学者入门生活爱心代码
一、实现思路粒子效果:–使用Pygame模拟粒子运动,粒子会以爱心的轨迹分布并运动。爱心公式:爱心的数学公式:x=16sin3(t),y=13cos(t)−5cos(2t)−2cos(3t)−cos(4t)参数tt的范围决定爱心形状。动态效果:粒子会从爱心轨迹出发,模拟旋转或扩散运动。二、完整代码后台私信三、运行效果运行代码后,你将看到:粒子围绕爱心形状分布,并不断扩散。爱心形状动态出现,粒子会随
- 初中信息技术说课python_第一单元 走进Python 编程世界
weixin_39917046
初中信息技术说课python
(共17张PPT)今年一场突如其来的新冠肺炎不仅使得人人带上了口罩,过了一个不一样的寒假,同时也使得我们以不一样的方式开启我们的学习。同学们你们知道那些人容易得肺炎重症呢?有基础病的身体素质差的身体质量指数(BMI,BodyMassIndex)是国际上常用的衡量人体肥胖程度和是否健康的重要标准,主要用于统计分析。肥胖程度的判断不能采用体重的绝对值,它天然与身高有关。因此,BMI通过人体体重和身高两
- Xsens惯性动捕技术优化人型机器人AI训练流程
宋13810279720
动作捕捉机器人人工智能
人工智能与机器人技术的飞速发展让人型机器人逐渐从科幻概念转变为现实应用,成为未来智能生活的重要组成部分。为了实现人型机器人动作的精准与流畅,惯性动捕技术正逐步成为优化其AI训练流程的关键手段。惯性动捕技术是一种利用惯性传感器(如加速度计、陀螺仪等)捕捉人体运动数据的方法。相较于光学动捕技术,惯性动捕不受环境光线和空间限制,具有更高的便携性和灵活性。在人型机器人AI训练过程中,惯性动捕技术能够实时捕
- 「重磅」Sci.Robot最新封面:由多种人体肌肉组织驱动的生物混合手,人机融合取得新突破
天机️灵韵
具身智能人工智能硬件设备机器人生物信息学具身智能人工智能
ScienceRobotics查看原文:https://www.science.org/doi/10.1126/scirobotics.adr5512论文解析:《Biohybridhandactuatedbymultiplehumanmuscletissues》研究背景与目标本研究提出了一种基于生物混合技术的机械手,通过集成多个人体骨骼肌组织(MuMuTA,Multi-MaterialMulti-
- 使用ThreeJS实现的宇宙大爆炸3D粒子特效思路,原理和关键代码解析
软件工程师文艺
前端3djavascript前端
目录1,引言2,技术实现2.1,初始化环境2.2,粒子生成与属性设置2.3,粒子运动与模拟宇宙膨胀2.4,后处理效果3,动画与用户交互4,优化与性能5,结论1,引言在本文中,我们将深入探讨如何利用Three.js库实现一个复杂且视觉冲击力强的宇宙大爆炸3D特效。这个效果不仅模拟了粒子的爆炸、扩散,还模拟了宇宙早期的温度变化和光学现象。实现的效果:ThreeJS实现粒子特效2,技术实现2.1,初始化
- 稀土紫外屏蔽剂:科技护航,守护您的健康与美丽
金士镧新材料有限公司
科技生活人工智能全文检索安全
在现代生活中,紫外线(UV)对人体的危害日益受到关注。无论是暴晒在阳光下,还是长时间使用电子产品,紫外线都在悄悄地侵害着我们的皮肤、眼睛,甚至是免疫系统。而在这场与紫外线的较量中,稀土紫外屏蔽剂凭借其卓越的性能,成为了科技护肤和材料领域的革命性力量。一、什么是稀土紫外屏蔽剂?稀土紫外屏蔽剂是一种利用稀土元素特性开发的高效紫外线屏蔽材料。稀土元素具有独特的光学性质,能够有效吸收并散射紫外线,减少紫外
- 【AI论文】OmniHuman-1: 重新思考一阶段条件式人体动画模型的扩展升级
东临碣石82
人工智能
摘要:端到端的人体动画技术,如音频驱动的说话人物生成,近年来取得了显著的进步。然而,现有方法在大规模通用视频生成模型方面的扩展仍然存在困难,限制了它们在实际应用中的潜力。在本文中,我们提出了OmniHuman,一个基于扩散变换器的框架,该框架通过将运动相关条件融入训练阶段来扩展数据规模。为此,我们为这些混合条件引入了两种训练原则,以及相应的模型架构和推理策略。这些设计使OmniHuman能够充分利
- 黑马苍穹外卖学习笔记
窦莎言Firm
黑马苍穹外卖学习笔记【下载地址】黑马苍穹外卖学习笔记本仓库提供了一份关于“黑马苍穹外卖”的学习笔记,由笔者在课余时间学习整理而成。笔记内容涵盖了部分源码解析、学习心得以及个人体会,旨在帮助有兴趣的读者更好地理解和掌握相关知识项目地址:https://gitcode.com/Open-source-documentation-tutorial/b7c5a资源描述本仓库提供了一份关于“黑马苍穹外卖”的
- AI赋能人力资源:效率与体验的双重提升
前端
在数字化时代,人力资源管理正面临着前所未有的挑战。传统的人力资源管理模式往往效率低下,难以满足快速发展的企业需求。而人工智能(AI)的兴起,为人力资源管理带来了新的机遇,它不仅能显著提升效率,还能大幅改善候选人体验。本文将探讨如何利用AI写代码工具等AI技术优化招聘流程,并提升候选人体验,最终实现人力资源管理的全面升级。AI驱动招聘流程的变革传统的招聘流程通常冗长而繁琐。从发布招聘信息到筛选简历、
- 基于机器学习的PM2.5浓度预测模型
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于机器学习的PM2.5浓度预测模型1.背景介绍1.1PM2.5概述PM2.5是指环境空气中直径小于或等于2.5微米的颗粒物,主要来源于燃煤、机动车尾气排放和工业生产等。PM2.5颗粒物由于体积小、质量轻,可长时间悬浮在空气中,易被人体吸入,对人体健康和生态环境造成严重危害。因此,准确预测PM2.5浓度对于制定环境治理政策和公众防护措施至关重要。1.2PM2.5预测的挑战PM2.5浓度的变化受多种
- 项目十二:智能门禁系统
相醉为友
单片机作业windows
所需功能:硬件设置:使用51单片机连接人体红外传感器、液晶显示器(LCD)、蜂鸣器和电磁锁。人体检测:实时监测门口的人体活动。LCD显示:在LCD上显示门禁状态和欢迎词。门禁控制:通过蜂鸣器和电磁锁实现门禁控制。实现步骤:初始化设备:连接51单片机、人体红外传感器、LCD、蜂鸣器和电磁锁。设置传感器和执行器的驱动和接口。2.人体检测和数据处理:if((mode==0)&&(Series==1)){
- 基于python使用OpenCV和MediaPipe通过人体姿态检测实现对标准的仰卧起坐数量的计量(一)
Komorebi_777
视觉学习pythonopencv开发语言
项目中主要运用到的库1.OpenCV2.MediaPipe3.math4.Numpy项目总流程用户准备仰卧起坐的时候,可以打开摄像头对准自己(本报告为方便呈现,将导入外部有关仰卧起坐的视频体现监测过程,并截图体现效果)并运行程序,则可以实现实时监测仰卧起坐的状态,通过获取人体一侧(本项目中指定为左侧)的肩膀、腰部和脚的点位,得到三个坐标值,而后利用数学公式讲指定两点(即肩膀与腰部、脚与腰部)的连线
- Nature Reviews Bioengineering|综述|皮肤启发的柔性生物电子材料、器件与系统(健康监测/柔性传感/电子皮肤/植入式电子/柔性电子/集成电路)
感知科学前沿
柔性传感柔性电子电子皮肤微信公众平台经验分享科技人机交互
斯坦福大学鲍哲南院士团队,在期刊《NatureReviewsBioengineering》上发布了一篇题为“Skin-inspiredsoftbioelectronicmaterials,devicesandsystems”的综述论文。综述内容如下:一、摘要生物电子器件和组件由软性、基于聚合物的和混合电子材料制成的设备与人体形成自然界面。可拉伸介电体、导电和半导体聚合物的分子设计的进展,以及它们与
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,