- 异常GPT:使用LVLMs检测工业异常
DUT_LYH
gpt人工智能算法
AnomalyGPT:利用LVLMs进行工业异常检测摘要本文介绍了一种名为AnomalyGPT的新型工业异常检测方法,该方法基于大型视觉语言模型(LVLMs)。AnomalyGPT能够检测并定位图像中的异常,无需手动设置阈值。此外,AnomalyGPT还可以提供与图像相关的详细信息,以交互方式与用户进行交流。本文详细阐述了AnomalyGPT的模型架构、解码器、提示学习器以及异常模拟方法,并在Vi
- PyTorch 实现图像卷积和反卷积操作及代码
算法channel
pytorch人工智能python深度学习机器学习
你好,我是郭震在深度学习中,尤其是在处理图像相关任务时,卷积和反卷积(转置卷积)都是非常核心的概念。它们在神经网络中扮演着重要的角色,但用途和工作原理有所不同。以下是对传统卷积和反卷积的介绍,以及它们在PyTorch中的应用示例。传统卷积(nn.Conv2d)用途传统卷积通常用于特征提取。在处理图像时,通过应用卷积核(也称为滤波器)来扫描输入图像或特征映射,可以有效地识别图像中的局部特征(如边缘、
- 基于matlab的相关模板图像匹配技术
简单光学
MATLABmatlab图像匹配相关模板匹配缺陷识别
一理论基础基于相关的模板匹配技术可直接⽤于在⼀幅图像中寻找某种⼦图像模式。图像相关的基本概念是:对于⼤⼩为M×N的图像f(x,y)和⼤⼩为J×K的⼦图像模式w(x,y),f与w的相关可表示为:c(x,y)=∑s=0K∑t=0Jw(s,t)f(x+s,y+t)c\left(x,y\right)=\sum\limits_{s=0}^{K}{\sum\limits_{t=0}^{J}{w\left(s,
- 目标检测教程视频指南大全
魔鬼面具
目标检测音视频人工智能
魔鬼面具-哔哩哔哩视频指南必看干货系列(建议搞深度学习的小伙伴都看看,特别是图像相关)深度学习常见实验问题与实验技巧(适用于所有模型,小白初学者必看!)还在迷茫深度学习中的改进实验应该从哪里开始改起的同学,一定要进来看看了!用自身经验给你推荐实验顺序!探究深度学习中预训练权重对改进和精度的影响!什么?你说你不会画模型结构图?行吧,那你进来看看吧,手把手教你画YAML结构图!探究深度学习中训练中的可
- opencv案例实战:表格修复
艾醒(AiXing-w)
零基础上手计算机视觉项目opencv人工智能计算机视觉
OpenCV表格修复前言案例读取图像高斯滤波二值化分离表格行和列还原结果优化获取表格框画出矩形框获取图像相关数据根据矩形框裁剪前言在对于图标的扫描问题当中,有些时候会遇到扫描的表格缺失的问题,通过OpenCV中的形态学变换(morphologyEx)实现对于表格的修复。案例假设我们这里有一张表,可以看到第二行和第二列的表格有些缺少,我们的任务是将这些表格补全。
- 如何用 Canvas 实现 PS 的液化功能
最近在做业务需求时,需要实现对图片的液化功能,类似于美图秀秀的瘦脸功能。这已经不仅是图片缩放、拖动、剪裁这类对图片整体的操作了,而是需要对图片的像素进行一系列的计算和修改,那么该怎么实现这个功能呢?基础知识在进入正题之前,我们先来了解一些数字图像处理和Canvas的基础知识。图像处理里的像素是什么现实世界中,人眼直接看到的图像或者在相机中拍摄到的影像,这类图片的最大特点是图像相关的物理量变化是连续
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 如何用 Canvas 实现 PS 的液化功能
最近在做业务需求时,需要实现对图片的液化功能,类似于美图秀秀的瘦脸功能。这已经不仅是图片缩放、拖动、剪裁这类对图片整体的操作了,而是需要对图片的像素进行一系列的计算和修改,那么该怎么实现这个功能呢?基础知识在进入正题之前,我们先来了解一些数字图像处理和Canvas的基础知识。图像处理里的像素是什么现实世界中,人眼直接看到的图像或者在相机中拍摄到的影像,这类图片的最大特点是图像相关的物理量变化是连续
- 缓存位图
鹿小纯0831
注意:对于大多数情况,我们建议您使用Glide库来获取,解码和显示应用中的位图。Glide在处理与在Android上使用位图和其他图像相关的这些和其他任务时,大部分复杂性都是抽象的。有关使用和下载Glide的信息,请访问GitHub上的Glide存储库。将单个位图加载到用户界面(UI)中非常简单,但是如果需要一次加载更多的图像,事情会变得更加复杂。在许多情况下(例如使用ListView,GridV
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
程序员一诺
python笔记人工智能深度学习深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 【深度学习】从0完整讲透深度学习第2篇:TensorFlow介绍和基本操作(代码文档已分享)
程序员一诺
python笔记深度学习人工智能深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 算法大览:24美赛深度总结与代码分享
小Z的科研日常
数学建模python
为协助参与美赛的同仁,本期我们特别对一系列相关算法进行深度总结。内容包括数据降维、聚类、论文写作、异常值检测、论文配图、图像相关算法以及机器学习自动化预测等多个主题,其中包含详实的案例和实用的代码示例。最后,祝大家取得好成绩!PS:关注公众号[小Z的科研日常],阅读号内原文免费获取[相关代码]。数据降维降维|基于PCA算法降维|基于KPCA算法【数据+代码】Lasso特征选择离散和连续数据的降维方
- 初学者在Python中的基本图像处理库 - OpenCV和imutils
小北的北
python图像处理opencv开发语言人工智能
处理图像处理和操作的最常用的库之一是Python的OpenCV。对于图像分类、目标检测或光学字符识别,在人工智能领域与图像相关的任何工作大多数时候都需要某种形式的图像处理和操作。在本教程中,我们将专注于OpenCV的一些基本功能。这些功能基础且有时非常有用。我们将通过示例学习它们。在开始之前,这是我们今天将要使用的库。importcv2importmatplotlib.pyplotasplt我们将
- python xy坐标轴刻度一致_Python在xy坐标系上绘制多幅图像
徐晨松
pythonxy坐标轴刻度一致
给定一组图像,以及与每个图像相关联的(x,y)坐标,我想为这组图像创建一个“合成”图,每个都在它的(x,y)坐标处。在例如,给定以下集合,其中列表中的每个项都是(x,y,image)元组:images=[(0,0,'image1.jpg'),(0,1,'image2.jpg'),(1,0,'image3.jpg)]我想创建一个绘图,其中与image1.jpg对应的图像在坐标(0,0)处的x-y图上
- 【音视频原理】图像相关概念 ② ( 帧率 | 常见帧率标准 | 码率 | 码率单位 )
韩曙亮
音视频原理音视频帧率码率fpsMbps帧率标准图像
文章目录一、帧率1、帧率简介2、常见帧率标准3、帧率=刷新率二、码率1、码率简介2、码率单位一、帧率1、帧率简介帧率FrameRate,帧指的是是画面帧,帧率是画面帧的速率;帧率的单位是FPS,FramesPerSecond,是每秒钟的画面帧个数;帧率是动画/电影/游戏的每秒钟的画面数,用于测量视频的信息数量;帧率越高,视频信息数量越多;帧率与流畅度相关,帧率越高,流畅度越高,需要的设备性能越高;
- 【音视频原理】图像相关概念 ③ ( RGB 色彩简介 | RGB 排列 | YUV 色彩简介 | YUV 编码好处 )
韩曙亮
音视频原理音视频图像RGBYUV颜色通道灰度值色度
文章目录一、RGB色彩1、RGB色彩简介2、RGB排列二、YUV色彩1、YUV色彩简介2、YUV编码好处一、RGB色彩1、RGB色彩简介RGB是计算机中的颜色编码方法,红(R)/绿(G)/蓝(B)三个颜色通道可以设置不同的值,每个通道的颜色值都可以取值0~255,这样三个通道叠加,可以表示出2563=16777216256^3=167772162563=16777216种颜色值;红(R)/绿(G)
- 多模态Multimodal医学图像相关论文
哥廷根数学学派
cnn人工智能神经网络深度学习算法
Survey[arXiv2022]VisualAttentionMethodsinDeepLearning:AnIn-DepthSurvey[pdf][arXiv2022]Vision+X:ASurveyonMultimodalLearningintheLightofData[pdf][arXiv2023]VisionLanguageModelsforVisionTasks:ASurvey[pdf
- 【python】15.图像和办公文档处理
九五一
python随心记python计算机视觉人工智能
图像和办公文档处理用程序来处理图像和办公文档经常出现在实际开发中,Python的标准库中虽然没有直接支持这些操作的模块,但我们可以通过Python生态圈中的第三方模块来完成这些操作。操作图像计算机图像相关知识颜色。如果你有使用颜料画画的经历,那么一定知道混合红、黄、蓝三种颜料可以得到其他的颜色,事实上这三种颜色就是被我们称为美术三原色的东西,它们是不能再分解的基本颜色。在计算机中,我们可以将红、绿
- DICOM体位信息说明
优视魔方
医学影像基础经验分享
DICOM数据方向DICOM中定义了一个以病人为基础的坐标系①,该坐标系是笛卡尔空间直角坐标系。DICOM中的跟图像相关的字段为:[0010,2210](AnatomicalOrientationType)=BIPED二足动物(默认)=QADRUPED四足动物以人举例,标准定义的方向是+X右肩膀到左肩膀+Y前胸到后背+Z足到头由此可知,该坐标系是右手坐标系。[7FE0,0010](PixelDat
- 10X空间转录组Visium || 空间位置校准
周运来就是我
SpaceRanger10X公司提供两款空间转录组软件,和单细胞对应的软件很相似,最大区别在于增加了空间信息的可视化。那么,如何将空间信息准确定位以及如何将基因表达量准确mapping到空间信息中呢?SpaceRanger结合LoupeBrowser?给出了一套解决方案。成像算法SpaceRanger依靠图像处理算法来解决与玻片(slide)图像相关的两个关键问题:确定组织位置校准基准点需要组织检
- 【深度学习】从0到完整项目第1篇:深度学习第一个案例(代码文档已分享)
程序员一诺
深度学习python笔记深度学习人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 史上最全AP、mAP通用代码实现(即插即用-基于yolo模型)
tangjunjun-owen
目标检测YOLOmap指标通用模块基于yolov5模型应用目标检测
提示:通用map指标框架代码介绍,并基于yolo模型应用map指标计算代码解读文章目录前言一、map模块整体认识二、map计算应用代码解读三、通用map计算指标代码解读四、基于yolov5使用通用map计算指标代码解读1、通用map指标计算模块整体结构说明2、参数构建3、数据准备4、模型初始化5、map指标计算函数(computer_main)代码解读①、获得图像相关路径及指标计算函数初始化②、获
- 1、aigc图像相关
爱补鱼的猫猫
AigcAIGC
aigc图像相关一、Diffusionwebui在autodl上部署一些问题二、lora和kohyass(1)角色模型(2)风格模型(3)dreambooth(4)模型合并(5)Lora加Adetail其他三、sdapi四、ai视频模型五、换脸六、voice2face七、clash代理八、3090、cuda和tensorflow1.x八、Nvidia显卡驱动、CUDA、cuDNN、Anaconda
- 文本生成精准图像字幕,谷歌等开源PixelLLM
RPA中国
机器人
传统的大语言模型可以描述、回答与图像相关的问题,甚至进行复杂的图像推理。但使用大型语言模型进行文本定位,或用图像指代准确坐标却不太行。为了进行该技术的探索,谷歌和加州大学圣地亚哥分校的研究人员开发了像素对齐大语言模型——PixelLLM。PixelLLM可以将图像位置信息作为输入或输出。当将位置作为输入时,模型可以根据位置生成与指定对象或区域相关的描述文本。当生成位置作为输出时,模型可以为每个输出
- 文本生成精准图像字幕,谷歌等开源PixelLLM
RPA中国
microsoftcopilot
传统的大语言模型可以描述、回答与图像相关的问题,甚至进行复杂的图像推理。但使用大型语言模型进行文本定位,或用图像指代准确坐标却不太行。为了进行该技术的探索,谷歌和加州大学圣地亚哥分校的研究人员开发了像素对齐大语言模型——PixelLLM。PixelLLM可以将图像位置信息作为输入或输出。当将位置作为输入时,模型可以根据位置生成与指定对象或区域相关的描述文本。当生成位置作为输出时,模型可以为每个输出
- 图片搜索/图片相似度计算学习笔记(2019-12-20-v1)
李日新
今天下午抽空补充学习了一下图片相似度计算的原理和技术,主要用于以图搜图的应用场景。这里简短的总结一下。后续可能会继续更新补充。一、图片搜索问题的基本步骤与原理(1)把1幅图像经过特征提取技术量化成一组高维向量(如2048维)(2)通过大规模向量搜索引擎支持大规模图像搜索(3)识别出图像相关信息(4)继续做一些细粒度的图像识别与分析,检索出相似的图片进行推荐。二、图片搜索问题的分类(1)根据文字
- 图像相关知识点及属性介绍
图灵追慕者
计算机视觉图像信息图像属性工业相机
图像常用属性指标图像的常用属性指标有以下几个:分辨率分辨率是指图像中可以显示的水平和垂直像素数。较高的分辨率意味着图像具有更多的细节和更高的清晰度。常用单位有像素(px)或者万像素(MP)。色彩深度色彩深度是指图像中每个像素可以表示的不同颜色数量。它决定了图像的颜色范围和细节。常用的色彩深度包括8位(256种颜色)、16位(65536种颜色)和24位(16777216种颜色)等。像素密度像素密度是
- Python OpenCV获取视频
有理叔
PythonPythonOpenCV
之前有文章,使用Android平台的OpenCV接入了视频,控制的目标是手机的摄像头,这是OpenCV的好处,使用OpenCV可以使用跨平台的接口实现相同的功能,减少了平台间移植的困难。正如本文后面,将使用类似的接口,从笔记本的摄像头获取视频,所以,尝试本文代码需要有一台有摄像头的电脑。不过,需要说明的的是,OpenCV的强项在于图像相关的处理,而不是视频的编解码,所以,不要使用OpenCV做多余
- 图像融合——现有比较火的网络
Keep forward upup
图像图像处理
在深度学习中,用于图像融合的详细网络(深度神经网络)通常是为了学习如何结合来自多个源的信息以生成一个单一、增强的输出图像。这些网络可以基于不同的架构设计,下面是一些常用于图像融合任务的深度学习网络类型:卷积神经网络(CNNs):常用于图像相关任务,因为它们可以有效地处理像素数据并提取空间特征。用于图像融合时,CNN可以设计成多输入网络,分别处理不同的图像源,然后在某一层或多层融合这些特征。生成对抗
- 3.PyTorch——常用神经网络层
沉住气CD
PyTorch神经网络人工智能深度学习pytorch
importnumpyasnpimportpandasaspdimporttorchastfromPILimportImagefromtorchvision.transformsimportToTensor,ToPILImaget.__version__'2.1.1'3.1图像相关层图像相关层主要包括卷积层(Conv)、池化层(Pool)等,这些层在实际使用中可分为一维(1D)、二维(2D)、三维
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那