- embedding模型有哪些?如何选择合适的embedding模型?
行云流水AI笔记
embedding
embedding模型是一种将数据映射到低维空间的模型,常用于自然语言处理、推荐系统、图像识别等领域。以下是一些常见的embedding模型:Word2Vec:CBOW(ContinuousBag-of-Words):通过上下文预测中心词。Skip-Gram:通过中心词预测上下文。GloVe(GlobalVectorsforWordRepresentation):结合了词频统计和Word2Vec的
- 自然语言处理基础知识入门(三) RNN,LSTM,GRU模型详解
这个男人是小帅
NLP自然语言知识梳理入门rnn自然语言处理lstmgru人工智能神经网络
文章目录前言一、RNN模型1.1RNN的作用1.2RNN基本结构1.3双向循环神经网络1.4深层双向循环神经网络1.5RNN的梯度爆炸和消失问题二、LSTM模型2.1LSTM和RNN的结构对比2.2LSTM模型细节三、GRU模型总结前言在上一章节中,深入探讨了Word2vec模型的两种训练策略以及创新的优化方法,从而得到了优质的词嵌入表示。不仅如此,Word2vec作为一种语言模型,也具备根据上下
- Word2Vec 原理是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonword2vec人工智能自然语言处理
Word2Vec原理是什么一、核心概念:从词语到向量的语义映射Word2Vec是2013年由Google提出的词嵌入(WordEmbedding)模型,其核心目标是将自然语言中的词语转换为稠密的连续向量(词向量),使向量空间中的距离能反映词语的语义相关性。本质:通过神经网络学习词语的分布式表示(DistributedRepresentation),打破传统one-hot编码“维度高、无语义关联”的
- 怎么对词编码进行可视化:Embedding Projector
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonembedding
怎么对词编码进行可视化:EmbeddingProjectorhttps://projector.tensorflow.org/EmbeddingProjector是用于可视化高维向量嵌入(如词向量、图像特征向量等)的工具,能帮你理解向量间的关系,下面以词向量分析和**简单自定义数据(比如特征向量)**为例,教你怎么用:一、词向量分析场景(以图中Word2Vec数据为例)1.加载数据与基础查看图里已
- python哈夫曼树压缩_哈夫曼树及python实现
七十二便
python哈夫曼树压缩
最近在看《tensorflow实战》中关于RNN一节,里面关于word2vec中涉及到了哈夫曼树,因此在查看了很多博客(文末)介绍后,按自己的理解对概念进行了整理(拼凑了下TXT..),最后自己用python实现Haffuman树的构建及编码。哈夫曼(huffman)树基本概念路径和路径长度:树中一个结点到另一个结点之间的分支构成这两个结点之间的路径;路径上的分枝数目称作路径长度,它等于路径上的结
- 词编码模型有哪些
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython人工智能机器学习数据挖掘分类算法
词编码模型有哪些词编码模型在高维向量空间的关系解析与实例说明如Word2Vec、BERT、Qwen等一、高维向量空间的基础概念词编码模型(如Word2Vec、BERT、Qwen等)的核心是将自然语言符号映射为稠密的高维向量,使语义相近的词汇在向量空间中位置接近。以Qwen模型为例,其15万字符的词表规模(通常基于字节对编码BPE)本质是在高维空间中为每个词分配唯一的坐标点,而向量之间的几何关系(如
- NLP学习路线图(四十五):偏见与公平性
摸鱼许可证
NLP学习路线图自然语言处理学习人工智能nlp
一、偏见:算法中的“隐形歧视者”NLP模型本身并无立场,其偏见主要源于训练数据及算法设计:数据根源:人类偏见的镜像历史与社会刻板印象:大量文本数据记录着人类社会固有的偏见。词嵌入模型(如Word2Vec,GloVe)曾显示:“男人”与“程序员”的关联度远高于“女人”;“非裔美国人姓名”更易与负面词汇关联。训练语料库若包含带有性别歧视、种族歧视或地域歧视的文本,模型便可能吸收并重现这些关联。代表性偏
- 多模态核心实现技术
charles666666
自然语言处理神经网络人工智能机器学习语言模型
一、模态表示(ModalRepresentation)模态表示是将不同模态数据(文本、图像、音频等)编码为计算机可处理的向量形式的核心步骤。1.单模态编码技术文本表示:采用词嵌入模型(如Word2Vec、GloVe)或预训练语言模型(如BERT、RoBERTa),通过Transformer层提取上下文特征,生成动态词向量。高阶表示:通过句向量模型(如Sentence-BERT)将整段文本映射为固定
- 自然语言处理之语言模型:Word2Vec:Word2Vec模型的训练与优化
自然语言处理之语言模型:Word2Vec:Word2Vec模型的训练与优化自然语言处理基础文本预处理文本预处理是自然语言处理(NLP)中至关重要的第一步,它包括多个子步骤,旨在将原始文本转换为适合机器学习模型的格式。以下是一些常见的文本预处理技术:分词(Tokenization):将文本分割成单词或短语。例如,将句子“我喜欢自然语言处理”分割为“我”,“喜欢”,“自然语言处理”。转换为小写(Low
- 基于 GQA 与 MoE 的古诗词生成模型优化 llm项目以及对应八股
许愿与你永世安宁
自用大模型八股rnnnlpberttransformer人工智能深度学习word2vec
目录项目项目背景个人贡献成果产出词嵌入Word2Vec两种训练方式:两种加速训练的方法:GloVe(GlobalVectorsforWordRepresentation)FastTextMHA、GQA、MLApromptengineering位置编码正余弦编码(三角式)可学习位置编码(训练式)经典相对位置编码T5相对位置编码RotaryPositionEmbedding(RoPE)attentio
- Python自然语言处理库之gensim使用详解
Rocky006
python开发语言
概要Gensim是一个专门用于无监督主题建模和自然语言处理的Python开源库,由捷克共和国的RadimŘehůřek开发。该库专注于处理大规模文本数据,提供了多种经典的主题建模算法,如LDA(潜在狄利克雷分配)、LSI(潜在语义索引)等,以及现代化的词向量模型Word2Vec、Doc2Vec、FastText等。Gensim的设计理念是"为人类而非机器",强调易用性和可扩展性,特别适合处理无标签
- 深度学习中的负采样
洪小帅
深度学习人工智能
深度学习中的负采样负采样(NegativeSampling)是一种在训练大型分类或概率模型(尤其是在输出类别很多时)中,用来加速训练、降低计算量的方法。它常用于:词向量训练(如Word2Vec)推荐系统(从大量候选项中学正例与负例)语言模型、对比学习、信息检索等场景本质概念在许多任务中,我们的模型要从上万个候选中预测正确类别。例如:给定单词“cat”,预测它上下文中出现的词(如Word2Vec的S
- NLP学习路线图(十八):Word2Vec (CBOW & Skip-gram)
摸鱼许可证
NLP学习路线图nlp学习自然语言处理
自然语言处理(NLP)的核心挑战在于让机器“理解”人类语言。传统方法依赖独热编码(One-hotEncoding)表示单词,但它存在严重缺陷:每个单词被视为孤立的符号,无法捕捉词义关联(如“国王”与“王后”的关系),且维度灾难使计算效率低下。词向量(WordEmbedding)革命性地解决了这些问题。它将单词映射为稠密、低维的实数向量(如50-300维),其核心思想是:具有相似上下文(Contex
- Word2Vec模型学习和Word2Vec提取相似文本体验
缘友一世
深度学习word2vec学习人工智能
文章目录说明Word2Vec模型核心思想两种经典模型关键技术和算法流程优点和局限应用场景Word2Vec提取相似文本完整源码执行结果说明本文适用于初学者,体验Pytorch框架在自然语言处理中的使用。简单了解学习Word2Vec模型,体验其使用。Word2Vec模型Word2Vec是一种广泛使用的词嵌入(WordEmbedding)技术,由Google团队(TomasMikolov等)于2013年
- NLP-gensim库
安替-AnTi
NLP
Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口。LSILDAHDPDTMDIMTF-IDFword2vec、paragraph2vec基本概念语料(Corpus):一组原始文
- gensim基础用法
雪儿waii
sklearn
fromgensim.modelsimportword2vecimportloggingfromgensimimportcorpora,models,similarities#logging.basicConfig(format="%(asctime)s:%(levelname)s:%(message)s",level=logging.INFO)#raw_sentences=["thequickb
- 人工智能深度学习之自然语言处理必备神器huggingface,nlp,rnn,word2vec,bert,gpt
weixin_58351028
算法机器学习深度学习自然语言处理人工智能
一。Huggingface与Nlp介绍解读(1)nlp中经常会听到分类,机器翻译,情感分析,智能客服,文本摘要,阅读理解等。我们训练的nlp模型,目的学会数据表达的逻辑,学会人类文字怎么去描述与理解,这体现出模型要有语言能力,这样就不管后续做什么都行。nlp不像cv一样输入图像后最后输出结果一个结果就完事了。如何培养模型的学习能力呢?首先要很多很多输入学习资料(这些都是大厂才能做的事)让模型去学习
- 从 Word2Vec 到 BERT:AI 不止是词向量,更是语言理解
ox180x
程序员转战大模型人工智能word2vecbert
一、前言在上篇文章中,我们介绍了Word2Vec以及它的作用,总的来说:Word2Vec是我们理解NLP的第一站Word2Vec将词变成了“向量”——终于可以用机器理解词语的相似度我们获得了例如“国王-男人+女人≈女王”的类比能力我们可以将Word2Vec这种算法能力,应用到各种创新场景,例如基于Graph的推荐系统,后续如果小伙伴有需要,可以一起深入交流。但同时也指出了它的不足:一个词=一个固定
- BERT模型原理与代码实战案例讲解
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1自然语言处理的演进自然语言处理(NLP)旨在让计算机理解和处理人类语言,其发展经历了漫长的历程:早期阶段:基于规则的方法,通过人工编写规则来解析和理解语言,但泛化能力有限。统计语言模型:利用统计方法学习语言模式,例如N-gram模型,但缺乏语义理解能力。深度学习:利用神经网络学习语言的深层特征,例如Word2Vec、RNN、LSTM等,语义理解能力显著提升。1.2BERT的诞生B
- 从代码学习深度学习 - 预训练word2vec PyTorch版
飞雪白鹿€
#自然语言处理深度学习pytorch
文章目录前言辅助工具1.绘图工具(`utils_for_huitu.py`)2.数据处理工具(`utils_for_data.py`)3.训练辅助工具(`utils_for_train.py`)预训练Word2Vec-主流程1.环境设置与数据加载2.跳元模型(Skip-gramModel)2.1.嵌入层(EmbeddingLayer)2.2.定义前向传播3.训练3.1.二元交叉熵损失3.2.初始化
- 【NLP-01】文本相似度算法:Cosine Similarity、Levenshtein Distance、Word2Vec等介绍和使用
云天徽上
NLP算法机器学习人工智能word2vec自然语言处理nlp
文本相似度计算的算法是自然语言处理领域中的关键技术,主要用于衡量两段文本在内容、语义或结构上的相似程度。以下是一些常用的文本相似度计算算法:余弦相似度(CosineSimilarity):余弦相似度是通过计算两个向量的夹角余弦值来评估它们的相似度。在文本相似度计算中,首先将文本转换为向量表示(如TF-IDF向量),然后计算这些向量之间的余弦值。余弦值越接近1,表示文本越相似。Jaccard相似度:
- 用 Gensim 实现 Word2Vec 古诗生成
万能小贤哥
word2vec人工智能自然语言处理
向量操作。我们将借助它完成从语料处理到古诗生成的全流程。6.1环境搭建与库导入首先安装Gensim及依赖库:bashpipinstallgensimnumpypandas导入必要模块:python运行fromgensim.modelsimportWord2Vec#核心词向量模型fromrandomimportchoice#随机选择字符fromos.pathimportexists#检查文件存在fr
- 图解gpt之神经概率语言模型与循环神经网络
zhaojiew10
gpt语言模型rnn
上节课我们聊了词向量表示,像Word2Vec这样的模型,它确实能捕捉到词语之间的语义关系,但问题在于,它本质上还是在孤立地看待每个词。英文的“Apple”,可以指苹果公司,也可以指水果。这种一词多义的特性,以及词语在上下文中的微妙变化,Word2Vec这种固定向量的表示方式就捉襟见肘了。而且,它还不能处理新词,一旦遇到词表里没有的词,就束手无策。所以,尽管有了词向量,NLP领域在很长一段时间内,也
- 从零开始大模型开发与微调:词向量训练模型Word2Vec使用介绍
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
从零开始大模型开发与微调:词向量训练模型Word2Vec使用介绍关键词:词向量,Word2Vec,神经网络,深度学习,自然语言处理(NLP),预训练,微调,Fine-Tuning1.背景介绍1.1问题由来在深度学习蓬勃发展的今天,人工智能技术在自然语言处理(NLP)、计算机视觉、语音识别等领域取得了长足的进步。然而,语言和文本数据由于其高维度和非结构化特性,使得深度学习模型的训练和应用面临诸多挑战
- 1991-2023年上市公司创新信息披露数据
经管数据库
数据分析
数据简介与传统词典法不同,本文采用“种子词集+Word2Vec相似词扩充”方法构建描述性创新信息指标。参考相关文献[11,28],对年报多次研读校验得到种子词集。相较于传统词法,Word2Vec神经网络模型可以根据语义信息将词汇转换为多维向量,并通过计算向量的相似度得到相似词。本文采用其中的CBOW(ContinuousBag-of-wordsModel)模型对中文语料进行训练。描述性创新关键词如
- Embedding:数据表示的深度探索
CarlowZJ
embedding
目录(一)Embedding的定义(二)Embedding的原理(三)Embedding的方法(一)Word2Vec架构图(二)基于Embedding的推荐系统流程图(一)使用TensorFlow实现Word2Vec(二)基于Embedding的协同过滤推荐(一)自然语言处理(二)计算机视觉(三)推荐系统(四)知识图谱(一)数据质量和预处理(二)模型选择与调优(三)计算资源与效率(四)隐私与安全摘
- 什么是 Embedding?从原理到实战的全面解析
樽酒ﻬق
AIGCembedding
目录什么是Embedding?从原理到实战的全面解析1.Embedding是什么?2.Embedding的基本原理2.1词嵌入(WordEmbedding)2.2句子嵌入(SentenceEmbedding)3.Embedding的应用4.Embedding的使用场景5.实战:用Word2Vec实现词嵌入5.1安装依赖5.2完整代码5.3运行结果5.4代码解析6.总结什么是Embedding?从原
- 深入解析 Transformers 框架(五):嵌入(Embedding)机制和 Word2Vec 词嵌入模型实战
老牛同学
AIAItransformersembeddingword2vec人工智能
微信公众号:老牛同学公众号标题:深入解析Transformers框架(五):嵌入(Embedding)机制和Word2Vec词嵌入模型实战公众号链接:https://mp.weixin.qq.com/s/qL9vpmNIM1eO9_lQq7QwlA通过前面几篇关于Transformers框架的技术文章,我们探讨了大模型的配置、分词器和BPE(Byte-PairEncoding)分词算法。这些技术帮
- 无网络环境下配置并运行 word2vec复现.py
风筝超冷
pythonlinux开发语言
需运行文件#-*-coding:utf-8-*-importtorchimportpandasaspdimportjiebaimporttorchimporttorch.nnasnnfromtqdmimporttqdmfromtorch.utils.dataimportDataLoader,DatasetfromtransformersimportAutoTokenizer,AutoModelde
- 深度学习Day-41:使用Word2vec实现文本分类
Point__Nemo
深度学习分类pytorch
本文为:[365天深度学习训练营]中的学习记录博客原作者:[K同学啊|接辅导、项目定制]任务:本次将加入Word2vec使用PyTorch实现中文文本分类,Word2Vec则是其中的一种词嵌入方法,是一种用于生成词向量的浅层神经网络模型,由TomasMikolov及其团队于2013年提出。Word2Vec通过学习大量文本数据,将每个单词表示为一个连续的向量,这些向量可以捕捉单词之间的语义和句法关系
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri