- halcon相机标定助手_四轴平面机器人的手眼标定
天猪飞翔
halcon相机标定助手
四轴平面机器人的手眼标定介绍在实际的机器人应用中,通常会给机器人配备视觉传感器,视觉传感器用于感知周围环境。但是,通过视觉传感器获取的场景坐标是基于视觉坐标系下的,机器人并不能直接使用,要获取机器人可以直接使用的坐标信息,必须将坐标转换到机器人坐标系下。因此,机器人手眼标定的目的是为了获取从视觉坐标系转换到机器人坐标系的转换矩阵。机器人手眼标定问题可以分为两类:1)eye-in-hand,视觉传感
- 说话人识别系统原理
醉心编码
人工智能基础编程基础技术类人工智能说话人识别语音识别
在当今数字化和智能化飞速发展的时代,说话人识别系统作为一项关键的生物识别技术,正逐渐融入我们生活的方方面面。简单来说,说话人识别系统就像是一位“语音侦探”,能够通过分析语音中的独特特征,精准地判断出说话者的身份。它与指纹识别、人脸识别等技术一样,都属于生物识别技术的范畴,但有着独特的优势——仅通过声音即可实现身份识别,无需额外的物理接触或视觉捕捉。与语音识别不同,语音识别关注的是语音内容的转写,比
- 模式识别课程设计:人脸识别 背景与问题引入之问题描述
XLYcmy
模式识别网络安全人工智能课程设计模式识别人脸识别PCALLM
1.2问题描述通过之前的背景介绍可以知道人脸识别技术作为计算机视觉和模式识别领域的重要研究方向,已广泛应用于身份验证、安全监控、智能家居等多个领域。随着计算机硬件性能的不断提升和深度学习技术的成熟,人脸识别的精度和应用场景不断扩展。本研究设计了一种基于主成分分析(PCA)[7]和K-L变换的人脸识别系统,利用ORL人脸数据库作为数据源,对输入的人脸图像进行识别,并输出与其特征最相似的人脸。该系统的
- Accord.NET框架功能介绍
绀目澄清
Accord.NETAccord.NET
机器学习组件Accord.NET框架功能介绍1.基本功能与介绍Accord.NET为.NET应用程序提供了统计分析、机器学习、图像处理、计算机视觉相关的算法。Accord.NET框架扩展了AForge.NET框架,提供了一些新功能。同时为.NET环境下的科学计算提供了一个完整的开发环境。该框架被分成了多个程序集,可以直接从官网下载安装文件或者使用NuGet得到。可以参考以下链接:https://g
- 基于matlab的帧间差法进行视频目标检测系统
挂科边缘
MATLAB项目实战matlab人工智能计算机视觉
文章目录前言一、理论基础1.帧间差分法2.背景差分法3.光流法二、程序实现总结源码下载前言运动目标自动检测是对运动目标进行检测、提取、识别和跟踪的技术。基于视频序列的运动目标检测,一直以来都是机器视觉、智能监控系统、视频跟踪系统等领域的研究重点,是整个计算机视觉的研究难点之一。运动目标检测的结果正确性对后续的图像处理、图像理解等工作的顺利开展具有决定性的作用,所以能否将运动物体从视频序列中准确地检
- 计算机视觉:经典数据格式(VOC、YOLO、COCO)解析与转换(附代码)
全栈你个大西瓜
人工智能计算机视觉YOLO目标跟踪人工智能数据标注目标检测COCO
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- 交互设计—奥卡姆剃刀原理(附教程)
千锋python和唐唐
Python学习教程100天
“奥卡姆剃刀原则”又被称为“简单有效原则”。我们常听到的“如无必要,勿增实体“指的就是奥卡姆剃刀原则。奥卡姆剃刀的含义,就是指一些不必要的元素会降低设计的效率,而且增加不可预测后果的发生概率。不管是实体、视觉或认知上,多余的负担都会削弱表现效能。多余的设计元素,有可能造成失败或其他问题。这个法则可以理解成去除设计中多余的元素,去除”解决方案的杂质,让最后的设计会更严谨、更纯粹。要在多项功能相当的设
- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- 基于特征提取的方法实现对心室视频的追踪
阿蛋会代码
音视频python开发语言opencv目标检测计算机视觉
一、特征提取的方法本代码实现了一套基于计算机视觉的心脏运动定量分析系统,通过特征点追踪技术对超声心动图视频进行动态解析。核心技术采用ORB(OrientedFASTandRotatedBRIEF)特征检测算法,在每帧图像中提取具有旋转不变性的显著斑点特征,构建包含位置和方向信息的特征描述子。通过暴力匹配器(BFMatcher)进行跨帧特征点匹配,结合汉明距离阈值筛选出可信度高的空间对应点对。系统以
- 【openCV-66】内参矩阵和外参矩阵
华东算法王
华东算法王-opencvopencv矩阵人工智能
外参矩阵与内参矩阵在计算机视觉、相机标定和三维重建等领域,内参矩阵和外参矩阵是描述相机如何将三维世界映射到二维图像的重要工具。它们分别描述了相机的内部特性和外部位置,是相机标定的核心组成部分。1.内参矩阵(IntrinsicMatrix)内参矩阵描述了相机内部的几何特性,主要涉及焦距、光心和像素的比例等参数。它通常是一个3x3的矩阵,用来将相机的归一化坐标系转换为像素坐标系。1.1内参矩阵的组成内
- 读心术思维导图
胡西风_foxww
#思维导图读心术思维导图模板markdown
读心术思维导图把自己变成他人贴近对方的肢体行为模仿姿势延迟动作不要过于精确模仿对方的声音模仿面部表情同样的速度和节奏配合对方的精神状态注意对方的精力值,让精力充沛起来的练习言行一致,情绪状态看懂他人,语言、思维方式视觉记忆视觉记忆听觉记忆动觉记忆EAC模型视觉创建视觉回忆听觉创建听觉回忆动觉记忆自言自语(内在的推理者)听觉记忆为主导的人语习惯与思维方式语速快慢节奏行话惯语口头禅听觉词汇(听、叫、问
- 机器视觉--光源打光技巧
手写不期而遇
Halcon项目实战笔记
1.高角度环光与低角度环光?这里的角度指的是与水平线之间的夹角,夹角介于0和90之间。一般夹角大于45度的是高角度光源。90度光源就是垂直往下面打光了,如图所示,这种打光的结果就是突出平面,有倒角的边缘部分可能不明显。呈现出中间亮,边缘暗;低角度光,呈现的效果是有倒角的地方亮,平坦的地方暗。总结的结果就是,高角度:顶端亮,倒角暗,顶端暗,倒角亮。2.频闪光源控制器的相关问题?光源控制器,电控控制器
- 机器视觉--相机曝光
C#Thread
数码相机自动化运维
在现代工业生产的精密舞台上,机器视觉技术已然成为推动生产自动化、智能化的关键力量。而工业相机作为机器视觉系统的“眼睛”,其曝光环节更是决定了视觉信息获取的质量与精度,如同为工业生产赋予了一双洞察入微的“智慧之眼”,对整个生产流程起着举足轻重的作用。接下来,让我们一同深入探索机器视觉中工业相机曝光的奥秘。一、工业相机曝光基础原理从本质上讲,工业相机曝光是指光线照射到相机图像传感器上,使传感器上的像素
- 深度学习批次数据处理的理解
_DCG_
计算机视觉深度学习人工智能
基础介绍在计算机视觉深度学习网络中,在训练阶段数据输入通常是一个批次,即不是一次输入单张图片,而是一次性输入多张图片,而神经网络的结构内部一次只能处理一张图片,这时候很自然就会考虑为什么要这样的输入?神经网络是如何处理多个数据的,下面从硬件架构的角度去分析处理。GPU硬件架构GPU的硬件架构设计是批处理能够高效运行的关键原因之一。GPU现阶段一般采用SIMT架构,它的特点如下:SIMT(Singl
- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.07.20-2024.07.25
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理大语言模型VLM视觉语言模型论文推送
文章目录~1.LPGen:EnhancingHigh-FidelityLandscapePaintingGenerationthroughDiffusionModel2.HighEfficiencyImageCompressionforLargeVisual-LanguageModels3.Q-Ground:ImageQualityGroundingwithLargeMulti-modalityM
- (5-2-01)DeepSeek多模态大模型架构:Janus模型(1)
码农三叔
训练RAG多模态)架构人工智能transformerDeepseek大模型多模态
5.2Janus模型Janus多模态模型的设计核心在于视觉编码的解耦。传统多模态模型通常使用单一的视觉编码器来处理多模态理解和视觉生成任务,但由于这两种任务对视觉特征的需求存在显著差异,单一编码器往往难以同时满足两种任务的需求,从而导致性能瓶颈。为了解决这一问题,Janus模型提出了双路径视觉编码架构,将多模态理解和视觉生成任务的视觉编码过程完全分离,从而避免了任务间的冲突,并显著提升了模型在多模
- 无人机定点运输技术!
云卓SKYDROID
无人机云卓科技科普高科技
核心要点定位与导航GPS/北斗定位:依赖卫星系统实现高精度定位。视觉导航:通过摄像头和计算机视觉技术识别环境。惯性导航:利用加速度计和陀螺仪进行位置推算。路径规划避障算法:实时检测并避开障碍物。动态路径调整:根据环境和任务需求实时优化路径。通信系统实时通信:确保无人机与控制中心保持稳定连接。数据加密:保障通信安全,防止干扰或劫持。负载与续航电池技术:提升续航能力。负载能力:优化设计以承载更多货物。
- 计算机视觉实战|Mask2Former实战:轻松掌握全景分割、实例分割与语义分割
紫雾凌寒
AI炼金厂#计算机视觉计算机视觉python深度学习mask2formertransformerpytorch
一、引言上一篇文章《计算机视觉|Mask2Former:开启实例分割新范式》,我们学习了Mask2Former的框架原理、优缺点以及应用领域。今天要带大家一起探索一个强大的图像分割工具——Mask2Former。作为一名技术博主,我的目标是让复杂的概念变得简单易懂,即使你是刚入门的小白,也能通过这篇文章学会使用Mask2Former进行全景分割、实例分割和语义分割。我会用通俗的语言一步步讲解,还会
- 《哪吒之魔童闹海》迅雷BT磁力下载[HD-5.39GB/6.32GB]百度云1280P资源共享
go
在2025年的春节档期,一部备受瞩目的动画电影《哪吒之魔童闹海》震撼上映,并迅速成为观众热议的焦点。作为《哪吒之魔童降世》的续作,该片不仅延续了前作的精良制作与颠覆性叙事风格,更在剧情、角色塑造、视觉特效等方面进行了全面升级。然而,需要强调的是,本文并不鼓励或提供任何形式的电影下载链接,而是旨在通过深入赏析这部电影,带领读者领略其独特的魅力与价值。《哪吒之魔童闹海》由导演饺子执导,成都可可豆动画影
- 全市场大模型分类及对比分析报告
早退的程序员
分类数据挖掘人工智能
全市场大模型分类及对比分析报告1.引言随着人工智能技术的飞速发展,大模型(LargeModels)已成为推动AI进步的核心力量。大模型凭借其强大的计算能力和海量数据处理能力,在自然语言处理(NLP)、计算机视觉(CV)、语音识别等领域取得了显著成果。本报告将对全市场中几类主要的大模型进行分类和对比分析,探讨其技术特点、应用场景及未来发展趋势。2.大模型分类根据模型架构、训练目标和应用领域,全市场的
- 城电|零碳公园解决方案:光伏太阳花与百花竞相绽放
城电科技
笔记
近日,珠海城电科技向内蒙古一座零碳公园又交付了数台光伏太阳花。城电科技—建设零碳新园区这些光伏太阳花被巧妙地安置于花海之中,与周围的万紫千红相映成趣。绿意盎然的草地,碧空如洗的蓝天,加上这些自动跟踪太阳轨迹的三轴智能太阳花和单轴智能太阳花,成为了温暖秋日里一道引人入胜的风景线。城电科技—建设零碳新园区它们在阳光的照耀下,仿佛在花海中翩翩起舞,既为零碳公园提供了清洁能源,又为游客带来了视觉上的享受,
- 点云配准(点云拼接)论文综述
点云SLAM
点云数据处理技术点云数据处理点云配准DeepICPICP深度学习配准方法特征匹配
点云配准(点云拼接)论文综述1.引言点云配准(PointCloudRegistration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综
- 使用 yolov8 进行对象检测
算法资料吧!
YOLO
在计算机视觉领域,YOLOv8对象检测确实以其超高的准确性和速度而脱颖而出。它是YOLO系列的最新版本,以能够实时检测物体而闻名。YOLOv8凭借其一流的对象检测将Web应用程序、API和图像分析提升到一个新的水平。在本文中,我们将了解如何利用yolov8进行对象检测。YOLO概述YOLO(YouOnlyLookOnce)是一种改变游戏规则的对象检测算法,于2015年问世,以其一次闪电般快速处理整
- 动态视觉SLAM的亿点点思考(含20项最新开源代码链接)[上篇]
3D视觉工坊
3D视觉从入门到精通人工智能
作者:泡椒味的口香糖|来源:3D视觉工坊添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。0.笔者个人体会动态环境下的视觉SLAM一直都是研究的重点和难点,但最近动态SLAM的paper越来越少,感觉主要原因是动态SLAM的框架已经固化,很难做出大的创新。现有的模板基本就是使用目标检测或者语义分割网络剔除动态特征点,然后用几何一致性做进一步的验证。笔者最近也在思考突破口,
- OpenAI: 人工智能领域的领军企业
2401_87458718
人工智能
OpenAI简介OpenAI是一家位于美国旧金山的人工智能研究实验室,成立于2015年。作为人工智能领域的领军企业,OpenAI致力于开发安全友好的通用人工智能(AGI),其使命是确保人工通用智能能够造福全人类。自成立以来,OpenAI在自然语言处理、计算机视觉、强化学习等多个人工智能领域取得了突破性进展,推出了一系列广受关注的AI模型和产品。OpenAI的发展历程OpenAI由埃隆·马斯克、山姆
- 无人机实战系列(二)本地摄像头 + Depth-Anything V2
nenchoumi3119
无人机实战无人机
这篇文章介绍了如何在本地运行Depth-AnythingV2,因为我使用的无人机是Tello,其本身仅提供了一个单目视觉相机,在众多单目视觉转Depth的方案中我选择了Depth-AnythingV2,这个库的强大在于其基于深度学习模型将单目视觉以较低的代价转换成RGBD图像,可以用来无人机避障与SLAM。Step1.拉取Depth-AnythingV2源码与模型下载官方仓库提供了两种方式调用De
- docker修改command_只要 8 个步骤,学会这个 Docker 命令终极教程!
凶残小龙虾
docker修改command
作者|TimothyMugayi译者|弯月责编|徐威龙封图|CSDN下载于视觉中国Docker容器已经从一种锦上添花的技术转变成了部署环境的必需品。有时,作为开发人员,我们需要花费大量时间调试或研究Docker工具来帮助我们提高生产力。每一次新技术浪潮来临之际,我们都需要花费大量时间学习。花费1-2天的时间来设置Docker集群,或找出导致Docker容器启动失败的代码,你是不是也有过类似的经历?
- 目标检测进化史:从R-CNN到YOLOv11,技术的狂飙之路
紫雾凌寒
AI炼金厂#机器学习算法#深度学习深度学习计算机视觉python目标检测YOLOcnn人工智能
一、引言在计算机视觉领域中,目标检测是一项至关重要的任务,它旨在识别图像或视频中感兴趣的目标物体,并确定它们的位置。目标检测技术的应用广泛,涵盖了自动驾驶、安防监控、智能机器人、图像编辑等多个领域。随着深度学习技术的飞速发展,目标检测算法也取得了巨大的突破,从最初的R-CNN到如今的YOLOv11,每一次的技术演进都为该领域带来了新的活力和可能性。回顾目标检测的发展历程,R-CNN作为第一个将深度
- 图像配准的方法
wangtaohappy
迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。图像配准的方式可以概括为相对配准和绝对配准两种:相对配准是指选择多图像中的一张图像作为参考图像,将其
- Figure自研模型Helix发布,人形机器人迈向新纪元?(2)
广拓科技
机器人
Figure自研模型Helix发布,人形机器人迈向新纪元?Helix作为Figure公司自主研发的端到端人形机器人视觉-语言-动作(VLA)通用大模型,在技术层面实现了多项重大突破,为机器人的智能化发展开辟了新的道路。(一)工业领域变革Helix模型在工业领域展现出了巨大的应用潜力,有望引发工业生产方式的深刻变革。目前,Figure公司已与宝马签署合作协议,计划在宝马位于美国南卡罗来纳州的工厂内部
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》